
Chapter 1: Introduction to Embedded System

1

 Embedded System Overview

 Classification of Embedded Systems

 Hardware and Software in a System

 Purpose and Application of Embedded Systems

Chapter 1: Introduction to Embedded System

2

1.1 Embedded System Overview

A. Introduction

An embedded system is a combination of computer hardware and software and may have

additional mechanical or other parts designed to perform a specific function. Embedded system is a

kind of computer system that performs a dedicated function and/or is intended for use with a

specific embedded software application. Embedded systems are devices which are used to control,

monitor or assist the operation of an equipment, machinery or plant. An embedded system may be

defined as a computer system designed for specific control functions within a larger system, often

with real time computing constraints. It may be embedded as a part of a complete device often

including hardware and mechanical parts.

B. Characteristics

Single functioned: As embedded systems are designed for specific control functions, it usually

executes a specific program to carry out the specific function repeatedly. In some cases, exceptions

may occur but in general all embedded systems are supposed to carry out single specified function.

One case is where an embedded system program is updated with a newer version. A second case is

when several programs are swapped in and out of a system due to some constraint.

Tightly constrained: Feasibility and utility of the embedded system are measured in terms of cost,

size, performance, power and other parameters. These all parameters are referred as design metric.

All computing systems are constraint with design metric but it is more tightly constraint in

embedded systems. Embedded systems in general must be economic, small possible size, fast

enough to process data in real time and must consume minimum power to extend battery life or

prevent the necessity of a cooling fan.

Reactive and real time: In general embedded systems must continually react to changes in the

system’s environment and must compute certain results in real time without delay. A delay in

computation and slow response may result a failure in the operation of the system.

C. Components

An embedded system has mainly three components hardware, application software and real time

operating system (small scale embedded system may not require RTOS).

Chapter 1: Introduction to Embedded System

3

Hardware: It represents the physical component of the system which interacts with each other to

perform the specific task. Processor, RAM, ROM, ADC, DAC, Timers, Ports etc are some of the

hardware components of the embedded system.

Application Software: The application software may perform concurrently the series of tasks or

multiple tasks. Generally they are written in Assembly, C, C++, Java etc.

RTOS: It supervises the application software and provides a mechanism to let the processor run a

process as per scheduling and do the context-switch between various tasks. RTOS defines the way

the system works and sets the rules during the execution of the application software. Win CE,

VxWorks, Embedded Linux etc.

D. Design Metrics

A design metric is a measurable feature of a system’s implementation. Some of the commonly used

metrics include:

 NRE cost (nonrecurring engineering cost): It represents the monetary cost for designing the

system. Large number of units can be produced without any additional design cost. Since the

cost doesn’t occur more than once for a particular system, it is termed as nonrecurring.

 Unit cost: It is the monetary cost of manufacturing each unit of the system excluding NRE cost.

 Size: It is the physical space required by the system. For software it is measured in terms of

bytes and for hardware it is measured in terms of no of gates or transistors.

 Performance: It represents the execution time of the system.

 Power: The amount of power consumed by the system, which may determine the lifetime of a

battery, or the cooling requirements of the IC.

 Flexibility: The ability to change the functionality of the system without incurring heavy NRE

cost.

 Time to prototype: The time needed to build a working version of the system, which may be

bigger or more expensive than the final system implementation. It can be used to verify the

system’s usefulness and correctness and to refine the system’s functionality.

 Time to market: The time required to develop a system to the point that it can be released and

sold to customers.

 Maintainability: The ability to modify the system after it initial release.

Chapter 1: Introduction to Embedded System

4

 Correctness: We can check the functionality throughout the process of designing the system and

we can insert test circuitry to check that manufacturing was correct.

 Safety: The system is supposed to cause no harm.

The Time to Market Design Metric

Introduction of an embedded system to the marketplace significantly affects the overall system

profitability. The market window, period during which the product have highest sales, for products

is getting shorter, so a short delay on introduction of product to the marketplace can render huge

loss. Using a simplified model of revenue as shown in the figure below, we will deduce the loss of

revenue that can occur due to delayed entry of a product in the market.

Figure 1.1: Market window and simplified revenue model for loss calculation for delayed entry

This model assumes the peak of the market occurs at the halfway point, denoted as W, of the

product life. The peak is same for delayed entry. The revenue for an on-time market entry is the

area of the triangle labeled On-time, and for delayed entry is the area of triangle labeled Delayed.

The difference between the areas of two triangles gives the revenue loss for a delayed entry.

Revenue Loss = ((On time - Delayed)/On time) * 100

Area of On time triangle = ½ * base * height

 = ½ * 2*W*W*tanβ (Assuming, market rise angle is β)

 = W2tanβ

Area of Delayed entry triangle = ½ * (2W-D)*(W-D)*tanα

Assuming β = α, and on solving we get,

 Revenue Loss = (D(3W – D)/2W2)*100%

Time

R
ev

en
u

e

Delayed

Peak Revenue

Market

fall

Market

rise

Time

R
ev

en
u

e

D 2W W

β α

On

time

Chapter 1: Introduction to Embedded System

5

The NRE and Unit Cost Design Metrics

The NRE cost is the one time monetary cost of designing the system, whereas the unit cost

represents the monetary cost of manufacturing each copy of the system, excluding NRE cost.

 Total Cost = NRE cost + unit cost * # of units

 Per-product Cost = total cost/# of units

 = NRE cost/# of units + unit cost

The larger the volume, the lower the per-product cost, since the NRE cost can be distributed over

more products. The per-product cost of the product approaches the unit cost for very large volume.

For Example, let us consider products using three different technologies; Technology A with NRE

Cost of $2000 and unit cost of $100, B with NRE cost of $30000 and unit cost $30, and C with NRE

cost of $100000 and unit cost $2

Figure 1.2: Plot of total and per product cost as a function of volume for products A, B and C

The plot on the left, total cost versus volume, shows that line of technology A and B intersect at 300

which implies technology A yields the lowest total cost for low volumes, less than 300 units.

Technology B Yields lowest total cost for volume between 300 and 1800, since the line of technology

B and C meets at 1800. Furthermore, technology C yields the lowest cost for volumes above 1800.

The plot on the right, per-product cost versus volume, illustrates how larger volume will amortize

NRE costs resulting in lower per-product costs. For example, for technology C with a volume of

50000, the per-product cost is $4 but if we consider a volume of 200000, the per-product cost will

reduce to $2.5.

A

B

C

To
ta

l C
o

st

1500 900 300

Number of units Number of units

P
er

 P
ro

d
u

ct
 C

o
st

Chapter 1: Introduction to Embedded System

6

The Performance Design Metric

Performance of a system is a measure of duration the system takes to execute our desired tasks.

Though the performance of a system is governed by clock frequency or instructions per second, the

main measures of performance are:

Latency or response time: the time between the start of the task’s execution and the end.

Throughput: the number of tasks that can be processed per unit time.

Speedup is a common method of comparing the performance of two systems. The speedup of

system A over system B is determined by:

 Speedup of A over B = performance of A/performance of B

E. Example of an Embedded System – A Digital Camera

A digital camera can be taken as embedded system as it performs only a single function of capturing

image. It is tightly constrained as it is affordable, portable, and consumes less power. And as it is fast

enough to process numeral images in milliseconds, it exhibits real time feature. But however, a

simple digital camera may not possess high degree of reactive attribute. On the contrary, few

contemporary digital cameras are capable of detecting human expressions.

Figure 1.3: Block diagram of a typical digital camera

The different components of the digital camera chip are listed below:

CCD Preprocessor Pixel coprocessor

Microcontroller JPEG Codec Multiplier/Accumulator

ISA bus interface UART LCD control

Display control

Memory Controller

ADC
DAC

DMA Controller

CCD

Lens

Chapter 1: Introduction to Embedded System

7

 Charge - Coupled Device (CCD): It contains an array of light sensitive photocells that capture an

image. A CCD is an integrated circuit etched onto a silicon surface forming light sensitive

elements called pixels. Photons incident on this surface generate charge that can be read by

electronics and turned into a digital copy of the light patterns falling on the device. Photons

striking a silicon surface create free electrons through photoelectric effect. And the electrons

are gathered in the place where they are generated and count them in some manner to create

an image. It is accomplished by positively biasing discrete areas to attract electrons generated

while the photons come onto the surface.

 Analog to digital converter: It converts analog images to digital images. The main job is to

classify the voltages of the pixels into levels of brightness and to assign each level to a binary

number, consisting of zeroes and ones. Most digital cameras use at least an 8-bit ADC, which

allows for up to 256 values for the brightness of a single pixel.

 Digital to analog converter: It converts digital images to analog images.

 CCD preprocessor: it provides commands to the CCD to read the image. Some other functions of

preprocessor are over scan correction and trimming, bias removal, dark current removal, and

flat fielding.

 JPEG (Joint Photographic Expert Group) Codec: It compresses and decompresses an image

using the JPEG compression standard which enables compact storage of images in the limited

memory of the camera.

 Pixel coprocessor: It helps in rapidly displaying images. A pixel coprocessor is required in digital

cameras for displaying images directly or after operations such as rotate right, rotates left,

rotate up, rotate down, shift to next, shift to previous.

 Memory Controller: It controls the access to a memory chip. It is a digital circuit which manages

the flow of data going to and from the main memory.

 DMA (Direct Memory Access) Controller: It enables direct memory access by other devices

while the microcontroller is performing other functions.

 UART (Universal Asynchronous Receiver and Transmitter): It enables communication with a

PC’s serial port for uploading video frames. It is the microchip with programming that controls a

computer’s interface to its attached serial devices.

 ISA (Industry Standard Architecture) bus interface: It enables faster connection with a PC’s ISA

bus. Most PC’s have an ISA slot on the main board that accepts either an 8 bit or a 16 bit ISA

printed circuit card.

Chapter 1: Introduction to Embedded System

8

 LCD Control: It controls the display of images on the camera’s liquid crystal device.

 Display Control: It also controls the display of images on the camera’s liquid crystal device.

 Multiplier/Accumulator: It assists with certain digital signal processing.

 Microcontroller: It is the processor that controls the activities of other circuits within the

system.

1.2 Classification of Embedded Systems

Classification based on Generation

A. First Generation

Embedded systems were designed using 8 bit microprocessors or 4 bit microcontrollers. The

hardware circuits were simple and the firmware was developed using assembly code. Motor

controller using 8085 can be an example of first generation embedded system.

B. Second Generation

In second generation, the systems were built using 16 bit microprocessors and 8/16 bit

microcontrollers. More complex and powerful instructions were available for the designer to work

with. Some systems involved embedded operating systems for their operation. Data Acquisition

Systems can be an example of second generation embedded systems.

C. Third Generation

The systems were designed with more advanced processor technology in the form of 32 bit

processors and 16 bit microcontrollers. Along with complex and powerful instruction sets,

instruction pipelining was introduced for better performance. Dedicated embedded real time

operating system implementation was another important feature in this generation. Also, the

concept of application specific processors like Digital Signal Processors (DSP) and Application Specific

Integrated Circuits (ASIC) came into existence.

D. Fourth Generation

Fourth generation was marked with the advent of System on Chips (SoC), reconfigurable processors

and multicore processors. These embedded systems used high performance real time embedded

operating systems for its operation.

Classification Based on Complexity and Performance

A. Small Scale Embedded Systems

Chapter 1: Introduction to Embedded System

9

These systems are designed with a single 8 or 16 bit microcontroller (8051 family, PIC16F8X, Hitachi

H8). They have little hardware and software complexities and involve board level design. They may

be battery operated. While developing embedded software for these system, an editor, assembler

and cross assembler specific to the microcontroller or processor are used as the main programming

tool. Usually C language is used for developing these systems. To develop such systems, the size

requirement of the software must not exceed the available memory while the hardware design

must be done in such a way that the power dissipation must be limited when the system is running

continuously. Automatic vending machine, stepper motor controller for a robotics system etc can be

the examples of small scale embedded systems.

B. Medium Scale Embedded Systems

These systems are designed with a single or few 16 or 32 bit microcontrollers (8051MX, PIC16F876)

or DSPs or Reduced Instruction Set Computers (RISCS). It may also employ the readily available

single purpose processors and IPs for various functions, for example: bus interfacing, encryption,

deciphering and so on. These systems have both hardware and software complexities. For software

design, the programming tools used is RTOS, Source code engineering tool, Simulator, Debugger and

Integrated Development Environment (IDE). Software tools also provide the solutions to the

hardware complexities. Some of the examples of medium scale embedded systems are Computer

networking systems, signal tracking system etc.

C. Sophisticated Embedded Systems or Large Scale Embedded Systems

These systems have enormous hardware and software complexities and may need scalable

processors or configurable processors and programmable logic arrays. They are used for cutting

edge applications that need hardware and software co-design and integration in the final system.

They are constrained by the processing speeds available in their hardware units. Certain software

functions are implemented in the hardware to obtain additional speed by saving time. Some of the

functions of the hardware resources in the system are also implemented by the software. These

systems generally implement high performance real time operating system. Development tools for

these systems may not be readily available at a reasonable cost or may not be available at all. In

some cases, a compiler or retargetable compiler might have to be developed for these. (A

retargetable compiler is one that configures according to the given target configuration in a system).

Embedded System for wireless LAN & for convergent technology devices is one of the sophisticated

embedded systems.

Chapter 1: Introduction to Embedded System

10

1.3 Hardware and Software in a system

In an embedded system, hardware of the system represents the single purpose processor whereas

the software represents the general purpose Processor.

A. Single Purpose Processor

Single Purpose processor is a digital circuit designed to execute exactly one program. It does not

require a program memory since the program to run on the processor is fixed (only one) and it can

be built into the digital circuit. The datapath contains only the essential components for the

specified task. JPEG codec, Display controller, DMA controller etc can be taken as the examples of

single purpose processor.

Design metric benefits of single purpose processor

 Performance may be fast, size and power may be small

 Unit cost may be low for large quantities

Design metric drawbacks of single purpose processor

 Design time and NRE costs may be high, flexibility low, unit cost high for small quantities

 Performance may not match general purpose processors for some applications.

Figure 1.4: Block Diagram of Single Purpose Processor

B. General Purpose Processor

The required functionality is carried out by programming the processor’s memory. In this context, a

programmable device is built that is suitable for a variety of applications. Microprocessors are the

examples of general purpose processor. Such processors include:

Controller Datapath

Data Memory

Control

Logic and

state

register

Registers

Functional

Units

Chapter 1: Introduction to Embedded System

11

 Program memory: The program cannot be built into the digital circuit in general purpose

processors since the program likely to run on the processor will be unknown.

 General Datapath: The datapath must be general enough to handle a variety of

computations, so such datapath typically has a large register file and one or more general

purpose arithmetic logic units (ALUs).

Design metric benefits of general purpose processor

 Time to market and NRE costs are low because designer must only write a program but does

not have to deal with any digital design.

 Flexibility is high because changing functionality requires changing only the program.

 Unit cost may be low in small quantities.

 Performance may be fast for computation intensive applications.

Design metric demerits of general purpose processors

 Unit cost may be relatively high for large quantities, since in large quantities we could design

our own processor and amortize NRE costs.

 Size and power may be large due to unnecessary processor hardware.

 Performance may be slow for certain applications.

Figure 1.5: Block Diagram of General Purpose Processor

Datapath

Data

Memory

Register

file

General

ALU

Controller

Program

Memory

IR PC

Control

Logic and

state

register

Chapter 1: Introduction to Embedded System

12

C. Application Specific Processors

Application specific processors are programmable processors optimized for a particular class of

applications. It generally includes program memory, optimized datapath and special functional units.

These processors provide optimum level of performance maintaining appropriate size and power

consumption. Microcontrollers for controlling application and digital signal processors (DSPs) for

huge data processing application are examples of application specific processors.

Figure 1.6: Block diagram of Application Specific Processors

1.4 Purpose and Application of Embedded Systems

Purpose of Embedded Systems

A. Data collection

In embedded systems, the data is collected from other external devices for storage, analysis,

manipulation or transmission. Data may be in analog or digital form. Systems working with digital

data require analog to digital converters if the collected data is in analog form. The collected data

can be used for meaningful purpose based on the functionality of the embedded system. For

instance, a digital camera collects data, stores it and finally provides graphical representation of data

in the form of captured image.

B. Data communication

An embedded system is required to connect two or more devices which may be at close vicinity or

at remote location. The communication between devices can be done via wired line medium or

wireless medium. Embedded systems are incorporated with different wireless modules or wire-line

Datapath

Data

Memory

Registers

Custom

ALU

Controller

Program

Memory

IR PC

Control

Logic and

state

register

Chapter 1: Introduction to Embedded System

13

modules for communication purpose. Bluetooth, ZigBee, Wi-Fi, and GSM are few wireless modules.

And for wire-line purpose, an embedded system may have RS-232, SPI, I2C, USB and other serial and

parallel protocols. Some embedded systems like network hubs, routers, etc act as mediators in data

communication and provide various features including data security.

C. Data Processing

The collected data in embedded system is subjected to some sort of processing for which embedded

systems are attributed with data processing modules. Speech coder, audio video codec, etc can be

few examples of data processing unit. Data processing includes the manipulation of data for

appropriate purpose.

D. Monitoring

Many embedded systems are incorporated with sensors to check the state of the different

parameters. The parameters can be current, voltage, temperature, humidity, etc which are

continuously monitored and appropriate processing or controlling of devices is done. However, the

value of the parameters cannot be controlled by the system itself. The values of parameters are

used for some controlling purpose or for some graphical representation purpose or simply stored for

further analysis and processing.

E. Control

For control purpose, actuators along with sensors are present in the embedded systems. The sensor

connected in input port detects the change in the desired parameter and the actuators at output

ports are controlled accordingly to implement the desired functionality. Electric Motors are

examples of actuators. In an object avoiding robot, ultrasonic sensor senses the presence of certain

kind of object and the motor is rotated accordingly to avoid the collision.

F. Application specific user interface

To provide the better user interface based on application has been one of the concerns of

contemporary embedded systems. Keypads, simple LCD modules, speakers, etc are basic and

common interface for users. However, sensitive touch pad along with high definition display has

been the sophisticated interface implemented in current scenario.

Applications of Embedded Systems

1. Household appliances: Microwave ovens, Television, DVD players and recorders.

2. Consumer electronics: cell phones, cameras, video games

Chapter 1: Introduction to Embedded System

14

3. Office automation: fax machines, printers, scanners

4. Business equipment: alarm systems, card readers,

5. Automobiles: engine controller, fuel injection, antilock brakes.

6. Networking: Modem, Network cards, Network switches and routers

7. Medical equipments

8. Aerospace research

9. Integrated systems in aircrafts and missiles

10. Industrial and Military applications

Chapter 2 – Hardware Design Issues

1

 Combinational Logic

 Sequential Logic

 Custom Single-Purpose Processor Design

 Optimizing Custom Single-Purpose Processors

Chapter 2 – Hardware Design Issues

2

2.1 Combination Logic

Combinational circuit is a digital circuit whose output is purely a function of its present inputs.

Combination logic circuits are made up from basic gates or universal gates that are combined or

connected together to produce more complex switching circuits. In general, logic gates are the

building blocks of combinational logic circuits. It has no memory block. Some of the examples of the

combinational circuits are decoder, multiplexer, adder, ROM etc.

CMOS Transistors

A transistor, which acts as a simple on/off switch, is the basic electrical component in digital system.

More abstract components, logic gates, are formed with the combinations of transistors. In

Complementary Metal Oxide Semiconductor (CMOS), the gate voltage controls the flow of current

from source to drain. The nMOS conducts when gate is at high voltage (5v) whereas pMOS conducts

when gate is at low voltage (0v). The symbol for nMOS and pMOS is shown in the figure 2.1.

Figure 2.1: nMOS and pMOS transistors

Different gates and boolean functions can be realized using nMOS and pMOS.

A. Inverter: When x = 0, transistor T1 conducts but T2 does not. So, output is logic 1. And when x =

1, T2 conducts but T1 does not.

Figure 2.2: Inverter, NOR and NAND gate using nMOS and pMOS

Source

Drain

Gate

Source

Drain

Gate

x

x

y

y

F = (x+y)’

1

0

0

1

x F = x’
F = (xy)’

y

0

y

x

x

1

T1

T2

T1

T2

T3 T4

T1 T2

T3

T4

Chapter 2 – Hardware Design Issues

3

B. NOR Gate

When x = 0 and y = 0, then T1 and T2 conduct but T3 and T4 don’t. So, F is connected to Vcc.

When x = 1 and y = 0, then T2 and T3 conduct but T1 and T4 don’t. So, F is connected to ground.

When x = 0 and y = 1, then T1 and T4 conduct but T2 and T3 don’t. So, F is connected to ground.

When x = 1 and y = 1, then T3 and T4 conduct but T1 and T2 don’t. So, F is connected to ground.

When atleast one of the two inputs is high then the output is connected to ground. And when both

inputs are low then the output is connected to Vcc.

C. NAND Gate

When x = 0 and y = 0, then T1 and T2 conduct but T3 and T4 don’t. So, F is connected to Vcc.

When x = 1 and y = 0, then T2 and T3 conduct but T1 and T4 don’t. So, F is connected to Vcc.

When x = 0 and y = 1, then T1 and T4 conduct but T2 and T3 don’t. So, F is connected to Vcc.

When x = 1 and y = 1, then T3 and T4 conduct but T1 and T2 don’t. So, F is connected to ground.

When atleast one out of two inputs is low then the output is connected to Vcc. And when both inputs

are high then the output is connected to ground.

Basic Logic Gates

 The NOT (Inverter) gate simply complements the input.

 The AND gate outputs 1 if and only if all of its inputs are 1.

 The OR gate outputs 1 if at least one of its inputs is 1.

 The XOR (exclusive-OR) gate outputs 1 when only one of its inputs is 1.

 The NAND, NOR and XNOR gates outputs the complement of AND, OR and XOR respectively.

Basic Combinational Logic Design

In Combinational Design, output is purely a function of its present inputs and has no memory of past

inputs. We can use basic logic gates to design combinational circuits. In such design, outputs are

described in terms of inputs.

General steps for combinational Logic Design

 The description is translated into a truth table with all possible combinations of input values.

 The input values lies on the left of the truth table and the corresponding output values of

the inputs lies on the right of the truth table.

 For each output, we have to derive the equations. The equation may contain number of

combinations of the inputs. The number of combinations depends on the number of high (1)

Chapter 2 – Hardware Design Issues

4

value on each column of the output. Rows of the inputs are used to derive the equation

corresponding to the high output of the column. And the equation must be further

minimized.

 Another way to derive minimized equation directly is by using k-map. It is always better to

use k-map unless the design is too simple (when the output column consists of only one

high value).

 The final equation is translated to an equivalent circuit diagram using logic gates.

Combinational Logic Design Example

Example 1: In an alarm system of a bank, three sensors are implemented and the alarm is triggered

when at least two sensors detect the change. Assuming sensors to output digital values, design a

combinational logic circuit for alarm system.

Solution: Let a, b, c represent the three sensors and y represents the buzzer for alarm. The output y

should be high when two or more than two inputs are high. The truth table and its corresponding

combinational design are shown below.

Figure 2.3: Truth table, K-map, and combinational circuit for bank alarm system

RT-Level Combinational Components

Register-transfer or RT level components are generally used when the design of the circuit becomes

complex. As the number of input increase, the complexity of the design increase. One of the ways to

reduce design complexities is by using RT-level components. Multiplexers, decoder, adder are the

examples of RT-Level Components.

a b c y z

0

0

0 0 0

0

 0

0

0 1 0

1

 0

0

1 0 0

1

 0

0

1 1 1

0

 1

0

0 0 0

0

 1

0

0 1 1

1

 1

0

1 0

1

1

 1

0

1 1

1

1

 Truth Table

y = ac + bc’

bc

0 0 0 1

0 1 1 1

00 01 11 10

0

1

a
y

K-Map

a
b

y c

Combinational Circuit

Chapter 2 – Hardware Design Issues

5

Figure 2.4: Few commonly used RT-Level Combinational Components

 A multiplexer allows only one of its data inputs to pass through to the output. For m x 1

multiplexer there are m data inputs and one data output with log2m select lines. The value of

select line determines which input data to pass through to the output. It can be used for parallel

to serial conversion.

 A decoder allows exactly one of the output lines to be high at a given time for a particular input.

For n input lines there will be 2n output lines. A decoder can be used for coding the addressing

lines in the memory. It can be used to convert binary to a suitable form.

 An adder is used to add two n – bit inputs producing an n-bit sum along with a carry of 1 bit.

 A comparator allows to compare two n-bit binary inputs, generating the corresponding output

based on whether one input is less than, equal to, or greater than another input.

 An arithmetic-logic unit (ALU) performs variety of arithmetic and logic functions on its n – bit

inputs. The select line is used to select which function is to be carried out. If there are 2m

functions that can be done by ALU then there must be at least m select lines.

 A shifter is another example which is used to shift the bits of the input right or left. It can be

used as a divider or multiplier. For example shifting 0110 (6) to the right would give 0011 (3).

Log(n) x n

Decoder

I(logn - 1) I1 I0

O(n - 1) O1 O0

n - bit

m x 1

MUX

I(m-1) I1 I0

S0

S1

S(logm)

Op

n

n

n – bit

Adder

X Y

Carry Sum

n n

n

n-bit

Comparator

X Y

Less Equal Greater

n n

n

n bit m

function

ALU

X Y

Op

S0

S1

S(logm)

n n

Chapter 2 – Hardware Design Issues

6

2.2 Sequential Logic

A sequential circuit is a digital circuit whose outputs are a function of not only the present inputs but

also the past inputs. The output of a sequential logic depends on its present internal state and the

present inputs. Hence a sequential logic circuit has some kind of memory. Logic gates and flip flops

are the basic building blocks of sequential logic circuits. Flip flop is an example of sequential logic

circuit.

A flip flop stores a single bit. The different types of flip flops are listed below.

 D-flip flop: It has two inputs D and clock, when clock is high, value of D is stored in flip flop and

same will be the value of the output Q. When clock is low, previously stored bit is maintained

ignoring the value of input D.

 SR flip flop: It has three inputs S (set), R (reset) and clock. When clock is low, the previously

stored bit is maintained ignoring the values of input at S and R. When clock is high, the output

varies with inputs S and R. If S is high, the output Q will be high and high bit (1) will be stored by

the flip flop. If R is high, then low bit (0) will be stored. The output will not change if both the

inputs are low but the undefined condition will occur if both the inputs are high.

 JK flip flop: Its operation is similar to that of SR flip flop but when both the inputs J and K is

high, the stored bit toggles either from high to low or low to high.

Flip flops are generally designed to be edge triggered to prevent the unexpected behavior from

signal glitches, the inputs are checked either at the rising edge or falling edge of the clock. Glitches

represent an undesirable transition that occurs before the signal settles to its intended value.

RT Level Sequential Components

Generally RT level sequential components are required for designing complex sequential systems.

Counters and registers are examples of RT level sequential components.

 A register stores n bits from its n bit data input which also appears at its output. A register

usually has at least two control inputs, clock and load. For a rising edge triggered register, the

inputs are only stored when load is high and clock is rising from 0 to 1. Another control input

clear may be used to resets all bits to 0 regardless of the value of input. Since all n bits of the

registers can be stored in parallel, we refer this type of register as a parallel load register.

 A shift register stores n bits from its one bit data input with at least two control inputs clock and

shift. When clock is rising and shift is 1, the nth bit of input is stored in the (n-1)th bit, and (n-

Chapter 2 – Hardware Design Issues

7

1)th bit of input is stored in the (n-2)th bit and so on down to the second bit being stored in the

first bit. The first bit is shifted out appearing as an output bit. It has one bit output and the input

must be shifted into the register serially.

 A counter is a register that adds binary 1 to its stored binary value. In general, a counter has a

clear, count and load as a control inputs. Clear resets all stored bits to 0 and a count input

enables incrementing on each clock edge. It often has parallel load data input and associated

load control signal. A common counter feature is both up and down counting which required an

additional control input to indicate the count direction.

A small triangle in the block represents the clock input for any sequential logic. Control inputs in

sequential logic can be either synchronous or asynchronous. A synchronous input value only has an

effect during a clock edge while an asynchronous input value affects the circuit independent of the

clock. Clear control lines are asynchronous inputs while load, shift count control lines are

synchronous inputs.

Figure 2.5: RT-Level Sequential Components

Sequential Logic Design

1. Translate the problem description to a state diagram, also called a finite state machine (FSM).

2. In FSM, each circle represents a state where desired output values are listed next to each.

Whereas the input conditions which cause a transition from one state to another are listed next

to each arc.

3. Draw an implementation model which implements the FSM using a state register to store the

current state and combinational logic to generate the required output values and next state.

4. Assign each state a unique binary value, and create a truth table for the combinational logic. The

external inputs and the bits coming from the state registers are fed to the combinational logic as

inputs. Whereas, the external output values along with the state bits to be loaded into the state

register acts as the output of the combinational logic.

shift

Op
In

n-bit Shift

Register

In

clear
Op

load
n-bit

Register

n

n

clear

count

Op

n-bit

Counter

n

Chapter 2 – Hardware Design Issues

8

5. The output values change only with the current state, so we list the external output values only

for each possible state, regardless of the change in external input values.

6. Now, we can have a truth table, with the help of which we can proceed with combinational

design by generating minimized output equations using k-map. And finally, drawing the

combinational logic circuit.

Sequential Logic Design Example

Example 1: Design a soda machine controller, given that a soda costs 75 cents and your machine

accepts quarters only. Draw a black-box view, come up with a state diagram and state table,

minimize the logic, and then draw the final circuit.

Solution: The coin must be entered three times to get a soda out of the machine. Throughout the

design, Cin represents the coin input and sout indicates the soda output whereas Q1, Q0 represent

current state and I1, I0 represent next state.

 0
sout = 0

 3
sout = 1

 1
sout = 0

 2
sout = 0

Cin = 0

Cin = 0

Cin = 0

Cin = 0

Cin = 1

Cin = 1

Cin = 1
Cin = 1

Q1Q0
00 01 11 10

0

1

Cin

I1

0 0 0 1

0 1 0 1

I1 = Q1Q0’ + Q1’Q0Cin

I0 = Q1’Q0Cin’ + Q1Cin + Q0’Cin

Q1Q0
00 01 11 10

0

1

Cin

I0

0 1 0 0

1 0 1 1

sout = Q1Q0

Q1Q0

0 0 1 0

1 0 0 1 0

00 01 11

0

1

Cin

sout
10

Inputs Outputs

0 0 0 0

0

 0 0 1 0

1

 0 1 0 0

1

 0 1 1 1

0

 1 0 0 1

0

 1 0 1 1

1

 1 1 0

0

\

0

0

 1 1 1

0

1

0

0

0

1

Q1 Q0 Cin Sout I1 I0

Soda Machine

Controller Cin

sout

A. Black Box View

B. State Diagram

C. State Table

D. K-map

Chapter 2 – Hardware Design Issues

9

Figure 2.6: Soda machine controller design

2.3 Custom Single-Purpose Processor Design

A basic processor consists of a controller and a datapath.

Datapath

 It stores and manipulates a system’s data.

 It contains register units, functional units and connection units like wires & multiplexors.

 The datapath can be configured to read data from particular registers, feed that data through

functional units configured to carry out particular operations like add or shift, and store the

operation results back into particular registers.

 Examples of data include binary numbers representing external conditions like temperature or

speed, characters to be displayed on a screen.

Controller

 It sets the datapath control inputs, like register load and multiplexor select signals, of the

register units, functional units, and connection units to obtain the desired configuration at a

particular time.

 It monitors external control inputs as well as datapath control outputs, known as status signals,

coming from functional units, and it sets external control outputs as well.

E. Combinational Circuit

Q1 Q0 Cin

I1

I0

sout

Chapter 2 – Hardware Design Issues

10

Figure 2.7: Internal View of controller and datapath of Single Purpose Processor

Steps for designing Single-Purpose Processor

1. Draw a Black Box Diagram: Black box diagram is a simple box with external interfaces of a

system. It generally includes input and output signals along with few control signals.

2. Write the functionality or program: The functionality or program is a code which provides the

solution to the defined problem.

 The input signals are assigned to a variable.

 Number of temporary variables may be used based on requirement.

 The final result is assigned to the output port.

3. Design a Finite State Machine with Data (FSMD): The code is converted into equivalent

complex state diagram which is known as Finite State Machine with Data. In FSMD, Templates

are used to represent various constructs of program. The templates for assignment, branch

statement and loop statement are discussed below.

Datapath

control inputs

Datapath

control Outputs

External data

inputs

External data

outputs

Controller

Next - State

and

Control

Logic

State

Registers

External

control inputs

External

control outputs

Datapath

Registers

Functional

Units

… …

… …

Chapter 2 – Hardware Design Issues

11

 Assignment Statement: For this statement, a single state is used with statement

representing its action. Generally, a single arrow is used to connect to next state. The

template used for statement C = A + B is shown as an example.

Figure 2.8: Template for assignment statement

 Branch Statement: It can be represented by using condition state C, join state J, and few

other states in between C and J state. State C and State J are with no actions, left empty.

But states between C state and J state contain actions. Its template can vary depending

on number of conditions defined in the problem. However, for each true condition,

there can be several states representing actions. Conditions are written along side with

the arrow that connects the C state and states of each branch. Last states of each

branch are connected to the J state.

Figure 2.9: Template for branch statement

 Loop Statement: Its template consists of Condition State C, Join State J, and other states

representing statements of loop. Condition is written alongside arrow connecting

condition state and state of first statement of loop. The last state of loop is connected to

the J state which is connected back to condition state. Complement condition is used

C = A + B

Next

Statement

if(C1)

 C1 Statements;

else if (C2)

 C2 Statements;

else

 Other statements;

C1

Statements

C2

Statements

Other

Statements

C1 !C1*C2 !C1*!C2

C:

J:

Chapter 2 – Hardware Design Issues

12

alongside arrow connecting C state and next statement outside of loop. The template

for the loop statement is shown in the figure below.

Figure 2.10: Template for loop statement

4. Build a Datapath: The datapath is build based on functionality of the system. Following steps

are needed to be taken into considerations while developing a datapath.

 Registers: The number of registers to be used is defined by the number of variables used

in the functionality. Registers are assigned to inputs, temporary variables and output.

 Functional Units: Blocks representing arithmetic and logical operations are defined

within the datapath.

 Connections: The connections among ports, registers and functional units are done

based on operands used in various assignments and comparison of functionality code.

Appropriate multiplexor is required when the value in register can be assigned from

more than one source. The sources may be an input port, a functional unit, or another

register.

 Control inputs and outputs: Input control signals are generally required by registers and

multiplexor. Register load signal is used in case of register while selection line signals for

multiplexor. Control output is produced by logical units of the datapath. Each control

singles are given a unique identifier.

5. Develop a Finite State Machine (FSM): The states and transitions for FSM are same as that of

FSMD. However, the complex actions and conditions of FSMD are replaced by Boolean

expressions using the control signals defined within datapath. For every register write

operations (assignment statement, arithmetic statements), register load signal is asserted and

while(cond)

{

 Loop statements;

}

Next statement;

C:

Loop Statements

cond

!cond

Next statement

Chapter 2 – Hardware Design Issues

13

corresponding multiplexor selection line is activated if there are two or more sources for a given

register. Also the logical operations are replaced by the control signals of its corresponding

functional block.

Example 1: Design a single purpose processor that calculates the Greatest Common Divisor (GCD) of

two numbers. Include FSMD, Datapath and FSM in the design.

 Initially, the black box view diagram is drawn and then followed by the functionality which is

converted into FSMD using appropriate templates.

int x,y;

while(1){

while(!go_in);

x = x_in;

y = y_in;

while(x ! = y){

if(x < y)

 y = y - x;

else

 x = x - y;

}

d_out = x;

}

Figure 2.11: Black box view, functionality and FSMD diagram of GCD processor

go_in x_in y_in

GCD

d_out

x<y

x = x_in

y = y_in

y = y - x x = x - y

d_out = x

!1

!(x<y)

x!=y

!go_in

1 go_in

!(x!=y)

1:

2:

2J:

3:

4:

5:

6:

7: 8:

6J:

5J:

9:

1J:

A. Black Box View

C. FSMD

B. Functionality Code

Chapter 2 – Hardware Design Issues

14

D. Datapath for GCD processor:

 Number of Registers: Two inputs x_in and y_in assigned to variables x and y, final result

assigned to d_out, and no other temporary variables are used. Hence, three registers x, y

and d are required.

 Functional Blocks: The arithmetic and logical operation involved in the functionality are x-y,

y-x, x!=y and x<y. Hence, two subtractors and two comparing blocks are required.

 Connections and MUX requirement: The value in register x has two sources, x_in and x-y, so

it requires a multiplexor of 2x1. Similar is the case for register y. For connections, the output

of registers x and y are connected to inputs of subtracting blocks and comparing blocks.

Also, the line representing x_in and x-y are connected to the inputs of mux whose output is

fed to register x. Similarly, y_in and y-x are connected to the register y through mux. And,

the output of x register is connected to input of register d. All connections must be done so

as to represent the corresponding operation in the functionality.

 Control Signals: Unique identifier for various control signals is assigned.

o Load signal of registers: x_ld for register x, y_ld for register y and d_ld for register d.

o Selection lines of multiplexor: x_sel for multiplexor associated with register x and y_self

for multiplexor associated with register y.

o Signals from logical block: x_neq_y and x_lt_y are used for x not equal to y and x less

than y respectively.

!= < - -

x_sel

x
x_ld

x_neq_y

d
d_ld

d_out

x_in y_in

x<y x - y y - x x != y

y_sel
2 X 1

2 X 1

y
y_ld

x_lt_y

Figure 2.12: Datapath of GCD Processor

Chapter 2 – Hardware Design Issues

15

E. Finite State Machine for GCD processor

All actions and conditions are replaced by equivalent Boolean expressions as used in datapath.

For example, action x = x_in is replaced by expressions x_sel = 0 and x_ld = 1. x_sel = 0 will

connect the input line x_in to register x and x_ld = 1 will load the value of x_in into x. In case of

d_out = x, only d_ld = 1 is used as it has only one source and no multiplexor is used. And

condition x< y is replaced by x_lt_y. The identifiers for control signals, however, used in FSMD

must match with the one that is defined in datapath.

Figure 2.13: FSM of GCD Processor

d_ld = 1

x_sel = 1, x_ld = 1

go_in

x_lt_y

!1

!(x_lt_y)

x_ne_y

!go_in

1

!(x_ne_y)

1:

2:

2J:

3:

4:

5:

6:

7: 8:

6J:

5J:

9:

1J:

x_sel = 0, x_ld = 1

y_sel = 0, y_ld = 1

y_sel = 1, y_ld = 1

0000

0001

0010

0011

0100

0101

0110

0111 1000

1001

1010

1011

1100

Chapter 2 – Hardware Design Issues

16

2.4 Optimizing Custom Single-Purpose Processors

Optimization is the task of making design metric values the best possible. Optimization can be done

by simplifying the resulting design of any system utilizing various techniques. Different states in the

FSM can be removed which does nothing and are redundant. Also, we can share a component for

same operations in different states and hence minizing the size of the system as well as its cost.

Other various factors can be considered for optimum design but some simple optimization that can

be applied are discussed further.

Optimizing the Original Program

We should analyze different program attributes and try to develop alternative algorithm that are

more efficient. We can analyze the algorithm in terms of time complexity and space complexity.

Number of computations can be a form of time complexity whereas the size of variables required

corresponds space complexity.

Lets take the example of GCD:

int x,y;

while(1){

while(!go_in);

x = x_in;

y = y_in;

while(x ! = y){

if(x < y)

 y = y-x;

else

 x = x-y;

}

d_out = x;

}

To compute GCD of 42 and 8, it takes 9

iterations to complete the operation, x and y

will take different values as (42, 8), (34, 8),

(26, 8), (18, 8), (10, 8), (2, 8), (2, 6), (2, 4), (2,

2).

int x,y,r;

while(1){

while(!go_in);

x = x_in;

y = y_in;

while(y != 0){

 r = x % y;

 x = y;

 y = r;

}

d_out = x;

}

To compute GCD of 42 and 8, it takes 3

iterations to complete the operation, x and y

will take values as (42, 8), (8, 2), (2, 0). If y is

greater than x, it will take 4 iterations, one

more than previous.

Chapter 2 – Hardware Design Issues

17

Optimizing the FSMD

Each state in an FSMD is assigned with operations from the desired program; this process is also

termed as scheduling. The scheduling process can be improved by following methods.

 Merge States: States with independent operations can be merged.

 Eliminate State: States with constants on transitions can be eliminated since transition to be

taken will be fixed as defined by constants. And some states without any operation can also

be eliminated.

 Separate States: States which require complex operations can be broken into smaller states

to reduce hardware size.

Considering the example of GCD:

Figure 2.14: Optimized FSMD from original FSMD

x = x_in

y = y_in

y = y - x x = x - y

d_out =x

go_in !go_in

x < y x > y

x = y

!1

!(x<y)

x!=y

!go_in

1 go_in

!(x!=y)

1:

2:

2J:

3:

4:

5:

6:

7: 8:

6J:

5J:

9:

1J:

x<y

x = x_in

y = y_in

y = y - x x = x - y

d_out = x

Chapter 2 – Hardware Design Issues

18

The following actions are taken to optimize the original FSMD.

 Eliminate state 1 – transitions have constant values

 Merge state 2 and 2J – loop has no body

 Merge state 3 and 4 – operations are independent of each other

 Merge state 5 and 6 – transitions from state 6 can be done in state 5

 Eliminate state 5J and 6J – transitions from each state can be done from state 7 and 8

respectively

 Eliminate state 1J – transitions from state 1J can be done directly from state 9

Consider the operation p = a*b*c*d, if we use single state for this particular operation then three

multipliers are required which renders system expensive and bulky. So the operation can be broken

down as x= a*b, y = c*d and p = x*y with each operations having its own state. Thus, only one

multiplier would be required in the system.

Optimizing Datapath

During the datapath design, the task of selecting a RT components for particular operation is termed

as allocation. Whereas the task of mappinig operations from the FSMD to allocated components is

termed as binding. The optimization in datapath design can be done by following ways.

 Sharing of Functional Units: Single functional unit can be shared if same operations occur in

different states. For example, in computation of GCD there were two subtractor used for

two subtraction, rather a single subtractor can be used with the help of the multiplexor.

Hence one to one mapping is not necessary.

 Use of Multi-functional Units: A variety of operations can be performed by ALU hence it can

be shared for different operaions occuring in different states.

Optimizing the FSM

Optimization in FSM can be done by:

 State Encoding: It is the task of assigning a unique bit pattern to each sate in an FSM. The

size of the register as well as the size of the combinational logic varies for different

encodings. For example, if we have four states then it can be encoded as 00, 01, 10 ,11 but it

can also be encoded as 11, 10, 01, 00. If the number of state is large the number of ways of

state encoding will be very large, hence CAD tools are used to determine the most efficient

encodings.

Chapter 2 – Hardware Design Issues

19

 State Minimization: It is the task fo merging equivalent states into a single state. Two states

are equivalent if those two states generate the same outputs and transition to the same

next state, for any given input combinations. Merging equivalent states yield exactly the

same output behaviour.

Few Solved Examples

Problem 1: Design a combinational logic circuit for the given problem whose description is given

as: y is 1 if a is 1, or b and c are 1. z is 1 if b or c is 1, but not both (or, a, b, and c are 1).

Solution: Initially, truth table is formed by writing down all possibilities of inputs followed by writing

the outputs as defined by the given problem. Then, the K – map is used to minimize the equations

and finally the combinational circuit is drawn.

Figure 2.15: Truth table, K-map, and combinational circuit

bc

0 0 1 0

1 1 1 1

00 01 11 10

0

1

a
y

y = a + bc

bc

0 1 0

0

1

0 1 1 1

00 01 11 10

0

1

a
z

z = ab + b’c + bc’

a b c y z

0

0

0 0 0

0

 0

0

0 1 0

1

 0

0

1 0 0

1

 0

0

1 1 1

0

 1

0

0 0 1

0

 1

0

0 1 1

1

 1

0

1 0

1

1

 1

0

1 1

1

1

Inputs Outputs

a
b
c

y

z

A. Truth table

B. K - map

C. Combinational Circuit

Chapter 2 – Hardware Design Issues

20

Problem 2: Design a 2-bit comparator with a single output “less than”, using the combinational

design technique described in the chapter. Start from a truth table, use K-maps to minimize logic

and draw the final circuit.

Solution: As the comparator is 2 – bit, there must be total of four inputs; two inputs each of two

bits. And only less than condition is to be checked, so only single output must be defined. Then the

general steps for designing a combinational logic circuit is followed.

Figure 2.16: Truth table, K-map and combinational circuit for two bit comparator

1 0 0 0

0

 1 0 1

0

 1 0 1 0

0

 1 0

1 1

1

 1 1 0 0

0

 1 1 0

1

0

 1 1 1

0

0

 1 1 1

1

0

0

 lt

0

0

0 0 0

0

 0

0

0 0

1

1

 0

0

0

1 0

1

 0

0

0

1 1

1

 0 1 0 0

0

 0 1 0 1

0

 0 1 1

0

1

 0 1 1

1

1

a1 a0 b1 b0

00 01 11 10

00

b1b0
a1a0

0 0 0 0

1 0 0 0

1 1 0 1

1 1 0 0

01

10

11

lt = b1a1’ + b0a1’a0’ + b1b0a0’

a1

a0

b1

b0

A. Truth table

C. Combinational Circuit

B. K - map

Chapter 2 – Hardware Design Issues

21

Problem 3: Construct a pulse divider. Slow down your pre-existing pulse so that you output a 1

every four pulses detected.

Solution:

Figure 2.17: Pulse Divider – State diagram, state table, K-map, combinational circuit

0

1 2

3
a = 0

a = 0

a = 0

a = 0

a = 1

a = 1

a = 1

a = 1

x = 0

x = 0 x = 0

x = 1
Combinational

Logic

State Registers

a
x

Q1 Q0

I0 I1

0

0

0

1

Inputs Outputs

0 0 0 0

0

 0 0 1 0

1

 0 1 0 0

1

 0 1 1 1

0

 1 0 0 1

0

 1 0 1 1

1

 1 1 0

1

1

 1 1 1

0

1

Q1 Q0 a x I1 I0

x = Q1Q0

Q1Q0

0 0 1 0

1 0 0 1 0

00 01 11

0

1

 a

 x
10

I0 = Q0a’ + Q0’a

Q1Q0
00 01 11 10

0

1

 a

 I0

0 1 1 0

1 0 0 1

Q1Q0
00 01 11 10

0

1

 a

 I1

0 0 1 1

0 1 0 1

I1 = Q1’Q0a + Q1a’ + Q1Q0’

Q1 Q0 a

I1

I0

x

A. State Diagram

B. Implementation Model

C. State Table

D. K - map

E. Combinational Circuit

Chapter 2 – Hardware Design Issues

22

Problem 4: Design a single purpose processor that calculates x to the power n (xn). Include FSMD,

Datapath and FSM in the design.

Solution:

int x,n,p;

while(1){

while(!go_in);

x = x_in;

n = n_in;

m = 1;

while(n>0){

m = m * x;

n = n - 1;

}

p_out = m;

}

Figure 2.18: The black box view, functionality and FSMD for processor that calculates xn.

go_in x_in n_in

POWER

p_out

n>0

!go_in

1

!1

x = x_in

n = n_in

m = 1

n = n - 1

p_out = m

go_in

!(n>0)

1:

2:

2J:

3:

4:

5:

6:

6J:

9:

1J:

m = m * x 7:

8:

A. Black Box View
C. FSMD

B. Functionality Code

Chapter 2 – Hardware Design Issues

23

D. Datapath for the processor that calculates xn

Figure 2.19: Datapath

n_ld

x_ld

m_ld

m_sel

n_sel

p_ld

n_gt_0

p_out

x_in n_in

1

0 1

x

>

2 X 1 2 X 1

p

n - 1 n > 0

n m

- *

m * x

Chapter 2 – Hardware Design Issues

24

E. FSM of the processor that calculates x to the power n

Figure 2.20: FSM Controller

4:

5:

6:

7:

8:

6J:

9:

1J:

n_gt_0

!go_in

1

!1

x_ld = 1

n_sel = 0

n_ld = 1

p_ld = 1

go_in

!(n_gt_0)

1:

2:

2J:

3:

m_sel = 0

m_ld = 1

m_sel = 1

m_ld = 1

n_sel = 1

n_ld = 1

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

Chapter 2 – Hardware Design Issues

25

Problem 5: Design a single purpose processor that generates Fibonacci series up to n places. Start

with a function that computes desired result, translate the function into a state diagram, sketch a

probable datapath, and draw FSM diagram.

Solution:

int ft, st, nt, count, n;

while(1){

while(!go_in);

n = n_in;

ft = 0;

st = 1;

count = 1;

while(count <= n){

f_out = ft;

nt = ft + st;

ft = st;

st = nt;

count++;

}

}

Figure 2.21: Fibonacci series generator – the black box view, functionality and FSMD

go_in n_in

FIBONACCI

f_out

!1

1

count<=n

!go_in

n = n_in

ft = 0

count = 1

st = 1

go_in

1:

2:

2J:

3:

4:

5:

6:

7J:

f_out = ft

7:

9:

Count++

st = nt

ft = st

nt = ft + st

1J:

8:

10:

11:

12:

!(count<=n)

A. Black Box View C. FSMD

B. Functionality Code

Chapter 2 – Hardware Design Issues

26

D. Datapath of the processor that generates Fibonacci series:

Figure 2.22: Datapath for Fibonacci series generator

n nt ft st count

<= +

2x1 2x1 2x1

inc

f

1 0 1

st_sel

c_sel

ft_sel

c_ld

ft_ld

st_ld

nt_ld

n_ld

c_le_n

n_in

f_out

f_ld

ft+st c<=n

Chapter 2 – Hardware Design Issues

27

E. FSM controller for Fibonacci series generator

Figure 2.23: FSM of Fibonacci series generator

!1

!go_in

1
go_in

n_ld = 1

ft_sel = 0, ft_ld = 1

c_sel = 0, c_ld = 1

st_sel = 0, st_ld = 1

1:

2:

2J:

3:

4:

5:

6:

7J:

f_ld = 1

7:

9:

c_sel = 1, c_ld = 1

st_sel = 1, st_ld = 1

ft_sel = 1, ft_ld = 1

nt_ld = 1

1J:

8:

10:

11:

12:

c_le_n

!(c_le_n)

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

Chapter 3 – Software Design Issues

1

 Basic Architecture

 Operation

 Programmer’s View

 Development Environment

 Application-Specific Instruction Set Processors

 Selecting a Microprocessor

 General-Purpose Processor Design

Chapter 3 – Software Design Issues

2

3.1 Basic Architecture

A general-purpose processor is a programmable digital system which consists of a datapath and

a controller which are tightly linked with a memory. Figure 3.1 shows the various components in

the architecture of the general-purpose processor.

Figure 3.1: Basic Architecture of general-purpose processor

DATAPATH

Datapath consists of the circuitry for transforming data and for temporary data storage. It

contains an arithmetic-logic unit which manipulates data through various operations such as

addition, subtraction, logical AND, logical OR, rotating, shifting etc. ALU also generates status

signals to represent various conditions such as carry, zero, sign, parity and so on. Such

information is stored in status register.

Data path contains registers to store temporary data and different status generated by

operations. The temporary data may be the data from memory for ALU to process, or the data

that needs to be moved from one memory to another memory, or the data from ALU that needs

further processing by ALU or needed storage. For data transfer within datapath, internal bus is

used. But movement of data from and to memory is done by external bus.

Processor

Control Unit

Controller

PC IR

Datapath

ALU

Memory

Registers

Control/Status

I/O

Chapter 3 – Software Design Issues

3

CONTROL UNIT

The control unit consists of circuitry to general control signals to carry out various operations. It

consists of controller, Program Counter (PC) and Instruction Register (IR).

Controller consists of a state register and control logic. It sequences through the states and

generates the control signals to read instructions into the Instruction Register, and control the

flow of data between ALU, registers of datapath and memory. Controller also determines the

next value of Program Counter. For non-branch instruction, the value of Program Counter is

incremented. But for branch instruction, status signals from datapath and content of Instruction

Register are evaluated for next address of program counter.

Program Counter is used to hold the address of the next program instruction to be fetched,

while an Instruction Register is used to hold the fetched instruction. The bit width of Program

Counter indicates the address size of memory which in turn can be used to determine the

number of directly accessible memory locations. For example, A 16 bit PC represents address

size of 16 bit and 216 = 65536 addressable memory locations.

MEMORY

Memory is used to store information for medium or long term. Information can be data or

program. Program information is the set of instructions that is used to carry out desired

function. Data are the information used by the program for various purposes.

There are two memory architectures based on program and data storage.

SN Harvard Architecture Princeton Architecture

1. Distinct data and program memory space Data and program share memory space

2. Improved performance: Data and

instructions can be fetched simultaneously

Data and instructions cannot be fetched

simultaneously

3. More connecting wires Less connecting wires

4. Block Diagram

Block Diagram

Processor

Memory

(Program and Data)

Processor

Program

Memory

Data

Memory

Chapter 3 – Software Design Issues

4

3.2 Operation

Instruction Execution

Instructions are the sets of code that carry out particular function. For each instruction, the

controller sequences through several stages. Each stage may consist of one or more clock cycles.

The various stages or sub-operations can be explained as:

 Fetch Instruction: The next instruction to be executed is loaded into Instruction Register

from memory. The address of the memory where instruction resides is given by

program counter.

 Decode Instruction: Instruction in the instruction register may represent various

operations based on op-code and may include register or memory as operands. In this

stage, the operation to be done by the instruction is determined.

 Fetch Operand: For a given operation, operand can be a register or memory. In

operations including registers, the required data are loaded into registers as specified by

the instruction.

 Execute Operation: The ALU handles the arithmetic and logical operations defined by

the instructions. The loaded registers are fed to the inputs of ALU to carry out the

operation.

 Store results: The destination to store results may be either register or memory. After

the execution of operation, the final data is loaded into register or memory as defined

by the instruction.

Pipelining

Pipelining is implemented to increase the throughput of the system. In pipeline, the given task is

divided into various stages and multiple stages which are independent of each other are

executed simultaneously. For efficient instruction pipeline, different stages must be of almost

same length and each instruction must require same number of cycles to complete its

execution.

Branching instructions can be an obstacle for efficient pipeline as next instruction to be

executed will only be known after execution stage of branch instruction. This problem, however,

can be addressed using various techniques. One simple method is to stall the pipeline when

there is an occurrence of branching instruction. The pre-fetch of next instructions is not done in

this method rather waited for execute stage to complete first. Another popular method is to use

Chapter 3 – Software Design Issues

5

branch prediction. In this method, the branch is guessed and the next instruction is fetched

correspondingly. If the guess is correct, then it results in efficient pipeline. But, however, if the

prediction is not correct then all pre-fetched instructions in the pipeline must be ignored. The

following diagram shows an example of an instruction pipeline having five stages.

Figure 3.2: Eight instructions in execution using instruction pipeline

In figure 3.2, there are 8 instructions in the pipeline with each instruction divided into five stages

and each requiring equal time to complete. In absence of pipeline, the total time required to

complete eight instructions would be 8 x 5 = 40 clock cycles, assuming each stage to complete in

one cycle. However, with pipeline implementation, the total completion time required is 12

clock cycles. In this way, pipeline helps to improve the performance of the system.

Superscalar and Very Long Instruction Word (VLIW) Architectures

Multiple ALU architecture is implemented in superscalar architectures to improve the

performance of the system. Such systems can execute two or more scalar operations in parallel,

which increase the requirement of ALU in the processor. It may require extensive hardware to

detect multiple independent instructions that can be executed simultaneously. Instructions in

such architectural systems are ordered statically (at compile time) or dynamically (during

runtime).

Very Long Instruction Word (VLIW) architecture is a type of static superscalar

architecture. It contains multiple independent instructions in a single word. Several

operations are encoded in a single machine instruction. The compiler detects and

schedules the instructions.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Fetch Instruction

Decode

Fetch Operands

Execute

Store Result

Time

Chapter 3 – Software Design Issues

6

3.3 Programmer’s View

Software programmer does not require detail understanding of architecture of the system;

instead they need to know what instructions are available and how they are used. Embedded

system programmer, however, needs to know certain information, if not all, about the system,

as the programs may include assembly level language.

Instructions in the program may be of different level. Firstly, in machine level the codes are in

binary form. Another level is assembly level in which mnemonics are used to represent

instructions which are processor specific in nature. Next level of programs follow structured

languages which are processor independent. Programmer of assembly language and machine

language must have information about architecture of the processor.

In embedded system design, the programmer must be aware of the following:

A. Instruction Set

The instruction set is a list of instructions which represent the bit configurations for operations

that can be carried out by the processor. Assembly language programmer must be aware of the

available instruction set. Since embedded system design may require some portion of assembly

code to be written, programmer of embedded system must know the instruction set available

for the processor they are working on.

Every instruction, in general, consists of op-code and operand field. Op-code field specifies the

operation to be done. Different types of instructions are explained briefly.

 Data-transfer instructions move data from memory to register, register to memory or

register or input/output ports.

 Arithmetic and logical instructions cause ALU to carry out certain operations involving

registers and store the final result back to register. ADD, SUB, AND, OR etc are few

examples of arithmetic and logical operations.

 Branch instructions change the flow of program and it also determines the address of

the next instruction to be executed. Branch instructions may be unconditional jumps,

conditional jumps or procedure call and return instructions.

An operand field specifies the location of actual data that takes part in an operation. The

number of operands per instructions varies among processors and its instruction type.

Addressing modes are used to represent data location and its accessing mechanism. The simple

instruction format is shown in the figure below.

Chapter 3 – Software Design Issues

7

Figure 3.3: Simple two address instruction format

Commonly used addressing modes are explained in the following paragraph.

Immediate Addressing Mode: The operand field contains the actual data.

Register Direct Addressing Mode: The operand field contains the address of the datapath

register in which the data is stored.

Register Indirect Addressing Mode: The operand filed contains the address of a register, which

in turn contains the effective address of the data in memory.

Direct Addressing Mode: The operand field contains the effective address of actual data that is

used in operation

Indirect Addressing Mode: The operand field contains the address of a memory location, which

in turn contains the address of a memory location in which actual data is available.

Implicit or Implied Addressing Mode: The operand field is not used in this mode; the register to

be used in operation is defined implicitly. In general, accumulator is used as an implicit register.

Displacement Addressing Mode: The operand is added to a particular register to obtain the

effective address of the data. In index addressing, index registers are used. While in relative

addressing, value of operand is added to the current address to determine the actual address.

The operations of few addressing modes can be visualized using following figure.

Figure 3.4: Addressing Modes

Op code Operand1 Operand2

Addressing Mode Operand Field Register File Memory

Immediate

Register Direct

Register Indirect

Direct

Indirect

Data

Register Address

Register Address

Memory Address

Memory Address

Data

Memory Address

Data

Address

Data

Data

Chapter 3 – Software Design Issues

8

B. Program and Data Memory Space

The programmer in embedded system design must be aware of the size available for program

and for data. Programs must be written within the defined memory space limits. For example, in

microcontrollers, the on-chip memory for program and data are fixed. So, one should be able to

write the code efficiently so as not to exceed the memory limit.

C. Available Registers

Programmer of embedded system design must be informed about the number of registers

available for general purpose and specific purpose. For example, multiplication in 8051

microcontroller can be done using accumulator and register B. Information about accumulator

and Register B is not required for structured language programmer. However, various special

function registers used for configuring timers, serial communication, and interrupts must be

known to every programmer.

D. Input Output Facility

Every processor facilitates programmer with input output pins to communicate with external

devices. Programmer working with processors must be alert about the number of input output

pins available and their functions. In parallel I/O, port can be read or written to using specific

function register. Also, communications can be done through system bus in which address and

data ports can be activated by certain instructions.

E. Interrupts

Interrupt is a facility provided to the user in which the processor serves the device which

requires urgent attention. It causes processor to suspend execution of the current program and

starts executing interrupt service routine that does the function required by the device which

interrupts the processor. The programmer should be aware of the types of interrupts supported

by the processor and must write interrupt service routine when required.

F. Operating System

An operating system is a layer of software that provides low-level services to the application

layer. Few services involve loading and executing of programs, sharing and allocating system

resources, and synchronization mechanism. Another important service is process scheduling in

which the high priority process is executed first. Other services include handling hardware

interrupts, and provide device drivers.

Chapter 3 – Software Design Issues

9

High level applications invoke operating system using system call. When a program requires

service from operating system, it generates a predefined software interrupt that is served by the

operating system. Values required to the services are typically passed as the parameters in the

program. CPU registers are involved for information exchange among application programs and

operating system.

3.4 Development Environment

Processors along with different development tools are used for the development of software or

an embedded system. Processor that is used to write and debug the program is commonly

referred as development processor. Desktop Computer can be taken as an example of

development processor. Such processors may not be a part of embedded system’s

implementations. But the processor in which our program is loaded is referred as target

processor. AVR, 8051, PIC microcontrollers or 8085, 8086 microprocessor can be few examples

of target processor. Such processors are always a part of system implementations. Various tools

for the software development as well as embedded systems development are described in the

following paragraphs.

Tools for Implementation Phase

Assemblers convert assembly instructions to binary machine instructions. It replaces op-code

and operand mnemonics by binary equivalent. It also translates symbolic labels into actual

addresses. It generates a equivalent binary code for a single machine instruction, so it follows

one to one mapping principle.

Compilers convert high level programs to machine programs. Each high-level constructs may be

translated to several machine instructions. Hence, it may not follow one to one mapping

principle. Cross compilers are those compilers which run on one processor but generate the

code for a different processor.

Linker combines object files into a single executable file, or another object file. It allows creation

of a program in separately assembled or compiled files. It combines machine instructions of user

code and instructions from standard library.

Tools for Verification Phase

Debuggers are programs that are used to test and debug the targeted program. These are

programs that run on development processor but execute code designed for target processors.

It simulates the function of the target processors and allows evaluation and correction of

Chapter 3 – Software Design Issues

10

programs in development processor. Stepping, breakpoints, watch values are few debugging

techniques supported by various debuggers. These debuggers are also known as instruction set

simulators (ISS) or virtual machines (VM). Design cycle for debuggers is fast as compared to

other tools, since the program is tested in development processor. But, these tools can,

however, lead to inaccuracy as it does not interact with the actual system.

Emulator can be a hardware or software that enables one system to behave like another

system. It consists of debugger coupled with a board connected to development processor. The

board consists of target processor or device similar to target processor and support circuitry. It

supports debugging of program while it executes on target processor. It also enables one to

control and monitor the program’s execution in actual embedded system circuit. Since the code

must be downloaded into emulator hardware in each test, the design cycle is little longer

compared to debugger. But it leads to accurate testing as it interacts with the rest of the system

components as well.

Device Programmers are the devices with the help of which binary machine programs are

loaded into target processor’s memory. Using this tool, the program can be tested in its realistic

form which results in high accuracy as program runs on actual system. The design cycle,

however, is longest since the target processor is removed from the system, programmed using

programmer and returned to the system. If the device programmer can be made in-build within

the system, the design cycle will be reduced.

DESIGN FLOW

Every software or system development process includes implementation and verification phase.

During implementation phase, various implementation tools such as assembler, compiler are

used while verification tools such as debugger, programmer are used in verification phase.

Software Development Process

For a software development, the development processor as well as the target processor may be

common. And the development tools are available in a single package which is referred as

Integrated Development Environment (IDE).

Chapter 3 – Software Design Issues

11

Figure 3.5: Software Development Process

Implementation Phase: Source code is written using an editor, and then the code is

compiled/assembled using compiler/assembler. Finally, with the help of linker all required files

are combined into a final executable file.

Verification Phase: The executable file is run under the command of a debugger. All possible

inputs, especially boundary cases, are used to check the behavior of program. Profilers can be

used for performance analysis of the program. Time and space complexity can be analyzed.

Time complexity includes duration of execution of program whereas space complexity includes

memory usage.

Embedded System Development Process

In case of embedded system design, the target and development processors are different in

almost all systems. The Integrated Development Environment (IDE) tools for various processors

are available for implementation phase. Though the implementation phase for embedded

Implementation Phase

Library

Source File

Source File

Source File

Compiler/Assembler

Object File

Object File

Object File

Linker

Executable

Program

Verification Phase

Debugger

Profiler

Chapter 3 – Software Design Issues

12

system is similar to that of software implementation phase, the verification phase differs

drastically.

Figure 3.6: Embedded System Development Process

Implementation Phase: The process of editing, compiling/assembling and linking the program is

same as that of software development process. However, development processors use cross

compilers or cross assembler. As those compilers run on development processor, for example

PC, and generate the file for target processor, for example hex file for microcontrollers.

Verification Phase: Embedded system works in conjunction with other components as well as

with real time environment, so debugging a program requires control over time and

environment. Based on requirement and availability, debuggers, emulators or device

programmers can be used for verification. Code may be simulated on development processor

using debuggers or code may be checked by loading into emulator hardware. Also, programmer

can be used to load the code directly into the target processor.

Implementation Phase

Verification Phase

Debugger

Emulator

Programmer

Editing

Compiling/Assembling

Linking

Chapter 3 – Software Design Issues

13

3.5 Application-Specific Instruction Set Processors

Application-Specific Instruction Set processors are specific to the particular application domain.

They can be programmed based on requirement of particular arena, which makes it more

flexible. Also other constraints such as performance, power, cost, and size are efficient enough

to develop a system. However, instruction set processor and its associated software tools are

expensive to develop. It can be categorized as microcontrollers, digital signal processors and less

general application specific instruction set processors.

Microcontrollers

Microcontrollers are specific to applications that perform a large amount of control oriented

tasks. The following are few general features of microcontrollers.

 It includes several peripheral devices such as timers, analog to digital converters, serial

communication devices, and so on.

 It generally contains program and data memory on the same IC. Various peripherals

along with memory incorporated within the same IC result in compact and low-power

implementation.

 It provides the programmer direct access to number of pins of the IC. Access to pins

enable programmer to interface with other devices such as sensor, actuators, LCDs, and

other different devices that may be used in the system.

 Some specialized instructions may be available. Such facility improves the performance

of the system.

Digital Signal Processors (DSP)

These are processors which are specific to applications that process large amounts of data. The

source of large amount of data includes image captured by a camera, voice packet through a

network router, audio clip played by an instrument. Few features, out of many, are listed below.

 It may contain numerous register files, memory blocks, multipliers and other

arithmetic units.

 It facilitates with instructions that are applicable uniquely to digital signal

processing. Filtering and transforming vectors can be two examples.

Chapter 3 – Software Design Issues

14

 Frequently used arithmetic functions are implemented using hardware. It results

in faster execution of arithmetic functions compared to software

implementation.

 Some special digital signal processors allow concurrent execution of functions

which boost the performance of the system.

 It incorporates many peripherals specific to signal processing. It may include

ADC, DAC, PWN, DMA controllers, Timers and Counters.

Less-General ASIP

These are developed to perform some very domain specific processing while allowing

some degree of programmability. Processors designed for networking hardware can be

taken as an example of less-general ASIP.

3.6 Selecting a Microprocessor

In any embedded system, a designer must select the microprocessor based on technical and

nontechnical aspects.

 Technical aspects: Selection of processor must be done based on required speed within

limited power, size, and cost.

 Non technical aspects: Before selecting microprocessor, one must be aware of

development environment, prior expertise of processor, licensing arrangements and so

on.

Comparing Speed

Speed of processors can be measured and compared using various methods.

A. Clock Speed of Processor

Speed can be compared based on clock speeds of processors, but the number of

instructions per clock cycle may differ. So, it may not be a efficient method unless

processors to be compared have same number of instructions per cycle.

B. Instruction per second

The speed can be evaluated using number of instructions executed per second. But the

complexity of available instruction sets may differ creating some hindrance in speed

Chapter 3 – Software Design Issues

15

comparison. For example, to perform same operation, one processor may require 200

instructions while another may require 300 instructions.

C. Dhrystone benchmark

It is a program that runs on different processors and evaluates their performance based on

execution of certain operations. Dhrystone benchmark performs no useful work rather

checks the integer arithmetic and string-handling capabilities of the processor on which the

benchmark runs on. Since processors can execute such operations thousands of times in a

second, speed of processor may be expressed in terms of Dhrystones per seconds.

D. Millions of Instruction Per Second (MIPS)

It is a general measure of computing performance and the amount of work a processor can

do. MIPS can be useful when comparing performance of processors having similar

architecture. The origin of MIPS is based on VAX 11/780 which could execute one million

instructions per second or could execute 1757 Dhrystones per second. Hence, 1 MIPS = 1757

Dhrystones/sec. Also, performance o f other computers were measured based on VAX

11/780.

3.7 General-Purpose Processor Design

General-purpose processor can be designed using the design technique of single-purpose

processor as general-purpose processor is a type of single-purpose processor which process

instructions stored in program memory. The design starts with the design of instruction set,

followed by creating a FSMD and datapath, and finally the controller is developed. All steps are

explained in details with example.

A. Instruction Set Design

Instruction set defines various operations that can be done by the processor. It also

determines the size of memory required along with number of registers to be used.

 Initially, how many and what kind of operations are to be included must be

considered.

 Then, how many, what types, and location of operands to be used must be selected.

 And finally the size and format of instruction must be set.

B. Creating a FSMD

FSMD represents the state diagram of the given functionality which is based on instruction

set. The following steps are required to generate a FSMD.

 First, RESET state is defined, which can be used to clear various registers.

Chapter 3 – Software Design Issues

16

 Next, FETCH state is used where instruction from memory is loaded in instruction

register. In this state, program counter is increment after each instruction fetch.

 Then, DECODE state is used as a transition state before execution of instructions. In

this state, no operation is done but it adds extra cycle necessary for instruction

register to get updated.

 Finally, EXECUTE state is defined based on the operation represented by opcode.

The number of EXECUTE state is given by the number of instructions available. The

operation to be performed is detected just before the start of this state and hence

the actual instruction operations are carried out in this state.

C. Building a Datapath

To carry out various operations of FSMD, datapath must be build. The following steps are

required.

 For each declared variable, we need to instantiate a storage device

 Then, instantiate functional units to carry out the FSMD operations. General

purpose ALU is, usually, implemented in the design.

 Connecting different components within the datapath. When more than one input

appear at any ports then appropriate multiplexor is needed.

 Finally, unique identifiers are created for every control signal.

D. Development of Controller or FSM

 Rewrite the FSMD states without any instructions or operations

 Equivalent binary operations on control signals must be written in each state rather

than the operation. Each FSMD operation must be replaced by binary operations

EXAMPLE: Design a general purpose processor with four data transfer instruction, two

arithmetic operations and one jump instruction.

The following are the considerations made in the design.

 16 bit instruction size, which has direct impact on memory and register selections.

 Instruction Register (IR) and Program Counter (PC) of 16 bit,

 Memory of 64K x 16 bit,

 Register file of 16 x 16 bit

Chapter 3 – Software Design Issues

17

A. Instruction set design

Instruction First Byte Second Byte Operation

MOV Rn, direct 0000 Rn Direct Rn = M(direct)

MOV direct, Rn 0001 Rn Direct M(direct) = Rn

MOV @Rn, Rm 0010 Rn Rm M(Rn) = Rm

MOV Rn, #imm 0011 Rn Immediate Rn = immediate

ADD Rn, Rm 0100 Rn Rm Rn = Rn + Rm

SUB Rn, Rm 0101 Rn Rm Rn = Rn – Rm

JZ Rn, relative 0110 Rn Relative PC = PC + relative (if Rn is 0)

Figure 3.7: A simple instruction set

From the above instruction set, the various means of data transfer and operations can be

analyzed which may be useful in developing FSMD and datapath.

 The address of memory location are available from

o Instruction Register: In instruction MOV Rn, direct and MOV direct, Rn, the direct

address is used which is available in IR as lower bytes.

o Register: In instruction MOV @Rn, Rm, the address of memory is given by value of

register.

(Address is also given by PC to load the instruction into IR)

 The value in register can be loaded from:

o Memory: In instruction MOV Rn, direct, register is loaded from memory whose

address is given by lower eight bits of IR.

o Instruction Register: In instruction MOV Rn, #imm, the immediate value of IR is

loaded into register.

o ALU: After execution of ADD Rn, Rm and SUB Rn, Rm, the final result is stored in

register.

 Three operations are performed by ALU

o Addition, subtraction and comparison

Chapter 3 – Software Design Issues

18

B. FSMD for given instruction set

In FSMD, the basic stages of instruction cycle are implemented as states. It includes RESET,

FETCH, DECODE and EXECUTE state. The RESET, FETCH and DECODE states are common to

almost every design. The EXECUTE state, however, differs when the number and type of

instructions are different.

Figure 3.8: Finite State Machine with Data (FSMD)

RF[rn] = M[dir]

M[dir] = RF[rn]

M[RF[rn]] = RF[rm]

RF[rn] = imm

RF[rn] = RF[rn] + RF[rm]

RF[rn] = RF[rn] - RF[rm]

PC = PC + RF[rn]?0:rel

PC = 0

IR = M[PC], PC = PC + 1

MOV2

MOV3

MOV1

ADD

SUB

MOV4

JZ

RESET

FETCH

DECODE

op =

0000

0010

0011

0100

0101

0110

0001

Aliases:

op – IR[15..12] dir – IR[7..0]

rn – IR[11..8] imm – IR[7..0]

rm – IR[7..4] rel – IR[7..0]

Chapter 3 – Software Design Issues

19

C. Datapath for FSMD

Figure 3.9: Datapath of our simple general purpose processor

Components in datapath

 Register file of 16x16 and a general purpose ALU.

 Multiplexer of 4x1, since the register in register file can have three sources;

Immediate data from IR, data from Memory, and data from ALU

Components in Control Unit

 Controller for next-state and control logic, state register, Program Counter, Instruction

Register

 Multiplexer of 4x1, since memory address can be selected from three sources; address

from PC, direct address from IR, and address from register.

Control Unit

Controller

(next-state and

control logic,

state register)

PC IR

A Memory D

PCclr

Irld

Ms

PCinc

Mre Mwe

Datapath

4 x 1 Mux

2 1

To all
input

Control
Signals

From all
output
Control
Signals

PCld

RFs

RFwa

RFwe

RFr1a

RFr1e

RFr2a

RFr2e

ALUs

ALUz

0

0

RFw

RF (16)

RFr1 RFr2

ALU

4 x 1 Mux

2 1

16

Chapter 3 – Software Design Issues

20

D. Finite State Machine (FSM) Design

Figure 3.10: Finite State Machine (FSM)

PCclr = 1

Ms = 10, Irld = 1

Mre = 1, PCinc = 1

RFwa = rn, RFwe = 1, RFs = 01

Ms = 01, Mre = 1

RFwa = rn, RFwe = 1

RFs = 10

RFr1a = rn, RFr1e = 1

Ms = 01, Mwe = 1

RFr1a = rn, RFr1e = 1, Ms = 00

RFr2a = rm, RFr2e = 1, Mwe = 1

RFwa = rn, RFwe = 1, RFs = 00

RFr1a = rn, RFr1e = 1

RFr2a = rm, RFr2e = 1, ALUs = 00

RFwa = rn, RFwe = 1, RFs = 00

RFr1a = rn, RFr1e = 1

RFr2a = rm, RFr2e = 1, ALUs = 01

RFr1a = rn, RFr1e = 1

ALUs = 10, PCld = ALUz

op =

0000

0001

0010

0011

0100

0101

0110

Chapter 3 – Software Design Issues

21

Converting FSMD operations to FSM operations

Example 1: MOV Rn, direct  RF[rn] = M[dir]

It means to read the content of memory of address dir (8 lower bits of IR) and write it

into one of registers of register file. Value of rn gives the address of register in register

file.

 Address of memory is directly available in IR, using multiplexer selection Ms = 01 will

select address from IR. For a memory read operation, Mre must be set (Mre = 1).

 The value is to be written into register file, so RFwa = rn selects a register from

register file and RFwe enables the write operation. Set RFs = 01, as data is coming

from memory.

Example 2: ADD Rn, Rm  RF[rn] = RF[rn] + RF[rm]

Here, values from two registers are read and then added using ALU. The final result is

stored in register. Address of registers to be selected is given by rn and rm for read

operation while value of rn gives the address of register for write operation.

 Selection of registers for read operation: RFr1a = rn and RFr2a = rm select two

registers while RFr1e = 1 and RFr2e =1 enable both registers for read operation.

 Adding the value of registers using ALU: ALUs = 00 represent the addition of two

registers.

 Selection of register for write operation: RFwa = rn selects the register and RFwe = 1

enables the write operation.

 Chapter 4 - Memory

1

 Memory Write Ability and Storage Permanence

 Common Memory Types

 Composing Memory

 Memory Hierarchy and Cache

 Chapter 4 - Memory

2

4.1 Introduction

A memory stores large numbers of bits. For m words of each n bits, memory can store total of m*n

bits. To access each word, address input signals are defined. Log2(m) address inputs are required to

select m words. Also, if there are k address inputs then the memory can have 2k words.

Figure 4.1: m x n memory

For example: A 4096 x 8 memory

 Stores 32768 bits

 Requires 12 (212 = 4096) address signals

 Eight input/output data signals.

A memory access may refer to memory read – retrieve the word of a particular address, or memory

write – store a word in a particular address. Control input signal r/w is used to indicate the type of

access. Another control input signal, enable, which when asserted, is used to access the memory.

Multiport memory supports multiple accesses to different locations simultaneously. Multiport

memory systems have multiple sets of control lines, address lines, and data lines.

Figure 4.2: External View of Memory

Conventionally, ROM is referred as a memory that a processor can only read, and it holds stored bits

even without a power source. Whereas, RAM is referred as a memory that a processor can both

read and write but loses its stored bits if power is removed. But contemporarily, advanced ROMs,

EEPROM and Flash, can be read as well as programmed and advanced RAMs, NVRAMs, can hold

their bits even when power is removed. Advancement of memory have blurred the distinction

enable

A0

Ak-1

Qn-1 Q0

2k x n

Memory

r/w

…

. . .

…
…

…

. .

.

n bits per word

m
 w

o
rd

s

 Chapter 4 - Memory

3

between the RAM and ROM. Different memories are differentiated based on two characteristics,

write ability and storage permanence.

4.2 Memory Write Ability and Storage Permanence

Write Ability refers to the manner and speed that a particular memory can be written. Every

memory must have a way to write bits onto it but the manner and speed of such writing varies

among different memory. In-system programmable is used to categorize memories into two along

the write ability axis. In-system programmable memory can be programmed by a processor whereas

non in-system programmable memory must be programmed by some external means.

Range of Write Ability

 High End – processor can write to memory simply and quickly by setting its address lines,

data input bits and control lines appropriately. Example: RAM

 Middle Range – processor can write to memory a bit slower compared to high end. Example:

EEPROM, FLASH

 Lower Range – special device called programmer is used to write into the memory. The

device must apply suitable voltage levels to write to the memory. E.g.: EPROM, OTP ROM

 Low End – bits are stored during fabrication. Example: Mask-programmed ROM

Storage Permanence refers to the ability of memory to hold its stored bits after those bits have

been written. Volatile and Nonvolatile are commonly used to divide memory types into two

categories along the storage permanence axis. Non volatile memory can hold its bits even after

power is no longer supplied. On the contrary, volatile memory requires continual power to retain its

data.

Range of Storage Permanence

 Low End – memory in this range begins to lose its bits almost immediately after those bits

are written and therefore it must be refreshed periodically. Example: DRAM

 Lower Range – memory holds bit as long as power is applied to the memory. Example:

SRAM

 Middle Range – memory in this range holds bits for days, months, or even years after the

memory power source has been turned off. Example: NVRAM

 High End – memory in this end will never lose its bits, as long as the memory chip is not

damaged. Example: Mask Programmed ROM

 Chapter 4 - Memory

4

Two characteristic, write ability and storage permanence, are important and desired in any system

but it creates a trade-off. Write ability and storage permanence tend to be inversely proportional to

one another. Moreover, highly writable memory, usually, requires more area and/or power than

less-writable memory.

Figure 4.3: Various memories based on write ability and storage permanence

4.3 Common Memory Types

Read Only Memory (ROM): It is a nonvolatile memory, that can be read from but cannot be written

to, by a processor, but it can be programmed by setting the bits within the memory. Traditionally,

ROM is programmed off-line, when it is not actively involved within an embedded system.

Figure 4.4: External Block Diagram

2k x n

ROM

enable

A0

Ak-1

Qn-1 Q0

 Chapter 4 - Memory

5

Uses of ROM

 store a software program for a general purpose processor

 To store constant data, like large lookup tables of strings or numbers

 to implement a combinational circuit

Example 1: Symbolic View of the internal design of an 8x4 ROM

 Horizontal lines = words (8), Vertical lines = data (4)

 Word line connected to data line via the programmable connections

 Circles on data and word lines are connected to represent high logic(1)

 Wired-OR represents all word lines are ORed together.

 If word 3 needs to be read then the input of decoder is set to 011 which makes the word 3

line high and other word lines low, since the data lines 0 and 3 are not connected to the high

word 3 line, the output of the ROM will be 0110.

Figure 4.5: Internal View of an 8x4 ROM

Example 2: Implement the following combinational functions using a ROM

 y = a’b’c’ + a’bc’ + ab’c + abc, z = a’b’c + a’bc’ + a’bc + ab’c + abc

Solution: Three inputs a, b and c is taken as address lines. So, for three inputs the decoder of 3 x 8

must be used resulting in eight word lines. And there are two outputs, so there must be two data

8 x 4 ROM

3 x 8

decoder

enable

A0
A1

A2

Q3 Q2 Q1 Q0

data line

word

line

Programmable

connections

word 0

word 1

word 7

 Chapter 4 - Memory

6

lines. Hence, a ROM of 8 x 2 is required. Initially, the truth table, if not given, is formed from the

given functions. The programming connections are done based on the output of the functions.

Inputs Outputs

a b c y Z

0 0 0 1 0

0 0 1 0 1

0 1 0 1 1

0 1 1 0 1

1 0 0 0 0

1 0 1 1 1

1 1 0 0 0

1 1 1 1 1

Figure 4.6: Truth table for given function and its implementation using ROM

TYPES OF ROM

A. Mask-Programmed ROM

 Connection is programmed during fabrication, by creating an appropriate set of masks.

 It has extremely low write ability. Once fabricated, its content cannot be reprogrammed or

changed.

 It has highest storage permanence. Stored bits will never change unless the chip is damaged.

 It is used in such embedded systems whose design has been finalized and large numbers of

unit are needed to be manufactured.

B. One-Time Programmable ROM – OTP ROM

 Connection is programmed using a device called programmer that configures each

programmable connection according to the file provided by user. Programmer blows fuses

by passing a large current wherever a connection is not required. The blown out fuses

cannot be reestablished, hence it is referred as one time programmable ROM.

 It has lowest write ability of all PROMs, since it can be programmed only once.

8 x 2 ROM

3 x 8

decoder

enable

c
b

a

 y z

1 0

0 1
1 1

0 1
0 0

1 1

0 0

1 0

 Chapter 4 - Memory

7

 It has very high storage permanence, since its stored bits won’t change unless, some more

fuses are blown out using programmer.

 It is cheap which makes it more suitable in final products compared to other types of PROM.

Also compared to mask-programmed ROM, time-to-market constraints and unit costs make

OTP-ROM a better choice.

C. Erasable Programmable ROM – EPROM

 EPROM uses a MOS transistor as its programmable component. The transistor has a floating

gate surrounded by insulator. When high voltage (12v – 25v) is applied, it causes electrons

to tunnel through the insulator into the gate. When the high voltage is removed, the

electrons cannot escape and hence the gate has been charged and programming has

occurred. To erase the program, the electrons must be excited enough to escape the gate

which is done by exposing UV light for 5 – 30 minute. For the UV light to reach the chip,

EPROMs are provided with a small quartz window in the package.

 Reading an EPROM is much faster than writing, since reading doesn’t require programming.

 EPROMs have improved write ability and can be reprogrammed thousands of times.

 EPROMs have reduced storage permanence. They hold their stored bits for about 10 years.

 Electrical noise or radiations causes stored bits of the chip subject to undesirable changes

and hence EPROMs are scarcely used in production. It offers a better choice in the testing

phase of the system rather than in production.

 Internal Operation of EPROM

a) Negative charges form a channel between

source and drain storing a logic 1

b) Large positive voltage at gate causes

negative charges to move out of channel

and get trapped in floating gate storing a

logic 0

c) Shining UV rays on surface of floating gate

causes negative charges to return to channel

from floating gate restoring the logic 1

d) An EPROM package showing quartz window

through which UV light can pass

 Chapter 4 - Memory

8

D. Electrically Erasable Programmable ROM – EEPROM

 EEPROM is programmed and erased electronically, using higher than normal voltage.

Electronic erasing requires seconds, rather than many minutes required for EPROMs.

Moreover, individual words can be erased and reprogrammed in case of EEPROM, whereas

EPROM can only be erased in their entirety.

 It is in-system programmable since circuit providing higher than normal voltage levels for

erasing and programming is built into the embedded system. EEPROM is built with a built in

memory controller which hides internal memory access details for the memory user and

provides a simple memory interface to the user. The memory controller contains the

circuitry and single purpose processor required to erase and program the word at the user

specified address.

 EEPROM provides better write ability compared to EPROM, it can be reprogrammed tens of

thousands of times.

 EEPROM has storage permanence on a par with EPROM, about 10 years.

 Writing is slower, since it involves the process of erasing and programming. Busy pin is

available to indicate that the EEPROM is busy in writing.

 EEPROM can be used to serve as the program memory for a microprocessor. It can also be

used to store data than an embedded system should save after the system is off.

E. Flash Memory

 It is an extension of EEPROM which uses the same floating-gate principle along with same

write ability and storage permanence.

 It improves the performance of a system with its fast erase ability, in which large blocks of

memory can be erased all at once.

 Writing to a single word in flash may be slower than writing to a single word in EEPROM,

since an entire block will need to be read, updated and written back.

Random Access Memory – RAM

It is a memory that can be both read and written easily. Typically RAM is volatile, since it loses its

content after the power is removed. The internal structure of RAM is comparatively complex than of

ROMs.

 Chapter 4 - Memory

9

Figure 4.7: External View of RAM

Example 1: Sketch the internal structure of a 6 x 6 RAM

 Each word consists of a number of memory cells, each storing one bit.

 Each input data line and output data line is connected to every cell in its column.

 Output of a memory cell being ORed with the output data line of each column.

 The read/write input is connected to every cell

Figure 4.8: Internal Structure of 6 x 6 RAM

Types of RAM

A. Static RAM – SRAM

 Uses a memory cell consisting of a flip flop to store a bit

 Requires about six transistors to represent a single bit

 It holds data as long as power is supplied hence called static RAM.

 Generally used for high-performance parts of a system. E.g. Cache memory

enable

A0

Ak-1

Qn-1 Q0

2k x n

RAM

r/w

…

. . .

Q2

3 x 8

Decoder

A0
A1
A2

Q5 Q4 Q3 Q1 Q0

enable

I5 I4 I3 I2 I1 I0

 Chapter 4 - Memory

10

B. Dynamic RAM

 Uses a memory cell consisting of a MOS transistor and capacitor to store a bit

 Requires only one transistor, resulting in more compact memory than SRAM

 Each cell must be charged (refreshed) regularly, since the charge stored in capacitor leaks

gradually causing the loss of data.

 DRAM access tends to be slower than SRAM, since accessing a DRAM word results in the

word’s being stored in a buffer and then being written back to the word’s cell.

Figure 4.9: SRAM and DRAM

C. Pseudo-Static RAM – PSRAM

 These are DRAMs with a memory refresh controller built in.

 PSRAM may be busy refreshing itself when accessed, which could slow access time and add

some system complexity.

 It is a popular low-cost high-density memory alternative to SRAM.

D. Nonvolatile RAM – NVRAM

 It holds data even after external power is removed.

o Battery-Backed RAM: Contains a static RAM with permanent battery connected. When

power is removed or drops below a certain threshold, the internal battery maintains

power and the memory continues to store its bits. There is no limit on the number of

times the Battery-Backed RAM can be written to.

o Static RAM with EEPROM or FLASH: This type of NVRAM stores its complete RAM

contents into the EEPROM just before the power is turned off. The data is reloaded into

RAM after the power is turned back in.

 Chapter 4 - Memory

11

Example: HM6264 and 27C256 RAM/ROM Devices

 Low-cost low-capacity memory devices used in 8-bit microcontroller-based embedded

systems

 The first two numeric digits indicate whether the device is RAM (62) or ROM (27), whereas

the subsequent digits give the memory capacity in kilobits.

 Placing a memory address on the address-bus and asserting the read signal output enable

(OE) performs a read operation.

 Placing some data and a memory address on the data and address busses and asserting the

write signal enable (WE) performs a write operation.

Figure 4.10: Example - HM6264 and 27C256 RAM/ROM Devices

4.4 Composing Memory

Composing Memory is needed when there is a need of particular-sized memory, which is not readily

available. If the available memory is larger than required one, then we simply use the needed lower

words of the memory and ignore the higher words which are not required. However, if the available

 Chapter 4 - Memory

12

memory is smaller than needed, some more design procedures are needed to be followed. The

various cases for composing memory have been discussed in the following paragraphs.

A. Case 1: To increase the width of words

When the number of words in the available memory is same to that of required one but the number

of bits or width of word is not enough then the width must be increased. To do that, the available

memories are connected side by side as shown in the given example.

Example 1: Compose 1K x 8 ROMs into a 1K x 32 ROM

Analysis: The available ROM 1K x 8 and required ROM of 1K x 32 have same number of words

but width is different. The number of ROM to be placed side by side is given by n.

 n = width of required ROM/width of available ROM = 32/8 = 4

 Address line = 1K = 1024bytes = 210 = 10 address lines

 Data line = 8 lines

Hence, four 1K x 8 ROMs are placed side by side to compose 1K x 32.

Figure 4.11: Composing 1K x 32 ROM from 1K x 8 ROM

B. Case 2: To increase the number of words

When the width of the word in the available memory and required memory is same but the number

of words are different then the words must be increased. We connect the ROMs top to bottom and

data line of each ROM is ORed. Since the number of words has to be increased, extra high-order

address is required to select the particular ROM which can be implemented by using appropriate

decoder.

Example 1: Compose 1K x 8 ROMs into a 4K x 8 ROM

Analysis: The available ROM 1K x 8 and required ROM 4K x 8 have same width of 8 bits but the

number of words is different. Number of ROMs and the size of decoder can be determined as

1K x 32 ROM

1K x 8

ROM

1K x 8

ROM

1K x 8

ROM

1K x 8

ROM

enable

A(9-0)

Q(31 - 24) Q(23 - 16) Q(15 - 8) Q(7 - 0)

10
8 8 8 8

 Chapter 4 - Memory

13

 N = number of words in required ROM/number of words in available ROM = 4K/1K = 4

 Decoder: It must be able to select 4 ROM, so 2 x 4 decoder must be used.

 Higher address bits = log2(4K) – log2(1K) = log2(2
12) – log2(2

10) = 12 – 10 = 2 bits or lines

 Total Address line: 4K = 212 = 12 address lines, and 10 lines (A9 to A0) are connected to

each ROM. 2 higher address is represented by inputs of decoder.

Hence, four ROM must be connected top to bottom and data line of each ROM is ORed. Decoder

of 2 x 4 is used to select a particular ROM.

Figure 4.12: Composing 4K x 8 ROM using 1K x 8 ROM

C. Case 3: To increase both, number of words and word width

When the width of the word as well as the number of words in the available memory and required

memory are different then the technique used in case 1 and case 2 must be combined. Initially, the

number of words is increased and then the top-bottom set of ROMs with ORed data lines are placed

side by side to increase the word width.

4K x 8 ROM

2 x 4

Decoder

enable

A0 – A9

A10

A11

10

8

8

8

8

1K x 8

ROM

1K x 8

ROM

1K x 8

ROM

1K x 8

ROM

8

Q7 – Q0

 Chapter 4 - Memory

14

 Example 1: Compose 1K x 8 ROMs into a 4K x 16 ROM

Analysis: The available ROM 1K x 8 and required ROM 4K x 16 differ in number of words as well

as word width.

 Increase number of words: 4k/1k = 4, Four ROMs are required with 2 x 4 decoder. 4K

represents 12 address lines, 10 lines connected to every ROM and 2 lines represented

by inputs of decoder.

 Increase word width: 16/8 = 2, Four set of ROMs are repeated two times and placed side

by side.

Figure 4.13: Composing 4K x 16 using 1K x 8 ROM

4.5 Memory Hierarchy and Cache

Memory Hierarchy

A system cannot be implemented with only fast memory as it makes the system very expensive. Also

the use of only slow and low cost memory will make system very inefficient. So, the concept of

4K x 16 ROM

2 x 4

Decoder

enable

A0 – A9

A10

A11

10

8

8

8

8

1K x 8

ROM

1K x 8

ROM

1K x 8

ROM

1K x 8

ROM

8

Q15 – Q8

8

8

8

8

1K x 8

ROM

1K x 8

ROM

1K x 8

ROM

1K x 8

ROM

8

Q7 – Q0

 Chapter 4 - Memory

15

memory hierarchy comes into action in which a system is more likely to implement slow but high

capacity memory for storage along with fast but small memory for high speed processing. Memory

hierarchy defines the level of memory based on cost per bit, capacity and access time. As we move

down the hierarchy, capacity increases, access time increases and cost per bit decreases.

Figure 4.14: Memory Hierarchy

Cache Memory

Cache is a small but fast memory which contains a copy of portions of main memory to expedite

operations of the system. Cache is designed using static RAM which makes it faster as compared to

main memory. The access time for cache can get as low as one clock cycle while main memory

access requires several cycles. So, the instructions and data which are supposed to get accessed

frequently are placed in cache memory. Hence, the average access time is reduces resulting in

improved performance.

During cache operation, the processor first checks the required word in cache. If it is available (cache

hit), the word is delivered to the processor. But, however, if the word is not available (cache miss) in

cache then the corresponding block of main memory is read into cache. And finally the word is

made available to the processor. This operation leads to various cache design issues which are

discussed in the following paragraph.

A. Cache Mapping Techniques

Cache memory is very small as compared to main memory. And all blocks of main memory cannot

be assigned to cache memory at once. So, cache mapping techniques are required to assign

particular block of main memory to the appropriate line in cache memory. There are basically three

types of mapping techniques which are discussed below.

Register

Cache

Main Memory

Magnetic Disk

Magnetic Tape

 Chapter 4 - Memory

16

Direct Mapping

In this technique, main memory block is assigned to a fixed cache line. The cache stores the content

of main memory, the tag and the valid bit. Here, the memory address is divided into the tag, the

index and the offset. The index, which is defined by the cache size, represents the cache address.

Index is used to select the particular cache line. The tag from main memory address is compared to

the tag stored in cache. In case the tag matches, the data from the cache line is accessed. However,

a single cache line can store few blocks of main memory. So to select a particular block, the offset

part of main memory address is used. The valid bit in cache is used to indicate the validity of data

stored in the cache slot.

Figure 4.15: Direct cache mapping

Direct cache mapping is easy and simple in implementation. However, when two blocks of main

memory which are assigned to a particular cache line are to be accessed frequently, then cache miss

occurs repeatedly. This problem is commonly referred as thrashing. Also, replacement algorithm

cannot be used, since main memory blocks are mapped to a fixed cache line.

Fully Associative mapping

In this mapping, main memory block can be assigned to any slot of cache line. The main memory

address is divided into tag field and offset field. The tag from main memory is compared to each tag

in the cache line. After the tag matches the offset is used to select a particular word in cache line.

Data

Valid

Tag Index Offset

V T D

=

 Chapter 4 - Memory

17

Figure 4.16: Fully associative cache mapping

Fully associative mapping provides high flexibility as block of main memory can be assigned to any

cache line. However, the comparison logic is required for each cache line which makes this mapping

method complex and expensive to implement. Miss rate can increase if frequently required block is

replaced, so appropriate replacement algorithm must be utilized for efficient cache implementation.

Set Associative Mapping

It is a compromise mapping which, somehow, follows both direct and fully associative mapping. The

cache is divided into sets, each with number of cache lines. A cache with a set of size N is called an

N-way set associative cache. Each block of main memory can be mapped to particular line of any

sets (fixed line but varying sets) or any lines of particular set (fixed set but varying lines). Taking

former case into consideration, the main memory address is divided into tag, index and offset. The

index field is used to select the fixed cache line, and the tag field of main memory is compared to tag

of each sets. When the particular set is selected, the offset is used to select the particular word from

the set in which the tag matches.

=

Tag Offset

…

Valid

V T D

V T D

=

V T D

=

Data

 Chapter 4 - Memory

18

Figure 4.17: Two-way set associative

Set associative cache mapping is more flexible and can reduce cache misses as compared to direct

mapping. Though the block of main memory is assigned to fixed cache line, block can be assigned to

any sets of cache line. And proper implementation of cache replacement can be used to increase

cache hit rate. Also the comparison logic is not required for every cache line rather is required for

only available sets which reduce the complexity and expense for implementing comparison logic.

B. Cache-Replacement Policy

When cache is full and new main memory block is to be assigned to the cache then certain

technique must be used to choose which cache line should be replaced. This mechanism of replacing

the existing block by new set of blocks is referred as cache-replacement policy. In direct mapping

the main memory block always maps to the fixed cache line, so replacement is fixed. But fully

associative and set associative can follow various replacement algorithms. Least Recently Used

(LRU), First In First Out (FIFO), Least-Frequently Used (LFU) and Random are few commonly used

replacement techniques.

 Random replacement replaces the block randomly without following any specific algorithm.

 Least Recently Used (LRU) algorithm is based on time in which the block not accessed for

longest time is replaced by the new block.

= =

V T D

Valid

Data

Tag Index Offset

V T D

 Chapter 4 - Memory

19

 First In First Out (FIFO) method uses queue mechanism to replace the first entered block.

Each block is pushed into the queue when accessed. And when replacement is required the

blocks are popped out from the queue.

 Least Frequently Used (LFU) technique is based on number of time the block is accessed.

The block which is accessed less number of times is replaced.

C. Cache Write Techniques

A mechanism is required when content of cache is changed by the processor and the change must

be updated to the corresponding main memory block. This technique of updating the main memory

after change in cache is referred as cache write policy. There are two common cache write policy;

write-through and write-back.

Write-through is a technique in which the main memory is updated immediately after the content in

cache is changed. This technique is easier to implement but the processor has to wait for slower

main memory frequent access. Also there are chances of unnecessary writes resulting in substantial

memory traffic. For example when a particular value is changed four times, the last updated value

must only be updated in the main memory. But the memory is updated four times for every change

causing unnecessary memory access.

Write-back policy allows main memory to be updated only when cache line is to be replaced. Extra

bit is associated with each cache line to represent whether the content of cache line is changed or

not. Based on that extra bit the corresponding main memory block is updated when cache line is

about to be replaced. Extra bit and update checking increase system complexity; however, it

reduces number of slow main memory access and avoids memory congestion.

D. Cache Impact on System Performance

The performance of system is directly related to design and configuration of caches. The total size of

cache, degree of associativity, and the data block size are important parameters that have direct

impact on performance.

Cache size is the total number of bytes that the cache can store. The tags and extra bits, which do

not contribute to the size of the cache, are also stored in cache along with the data of main memory

block. Increasing the size of cache results in lower miss rates, however the access of data from the

cache will be slower. So, larger cache size does not necessarily mean better performance.

 Chapter 4 - Memory

20

Degree of associativity is related to number of sets used in set associative cache implementation.

Increasing the number of sets will improve the hit rate. However, additional logic requirement will

increase the access time latency.

Cache line size represents the size of each block in cache that holds the block of data of main

memory. When line size is increased, the main memory access time is, obviously, reduced but only

at the expense of more complex multiplexing circuitry which increases the access latency.

Example: Effect of cache size on system performance

Case I: Cache size = 2Kbytes, miss rate = 15%, hit cost = 2 cycles, miss cost = 20 cycles

 Average cost of memory access = (0.85 x 2) + (0.15 x 20) = 4.7 cycles

Case II: Cache size = 4Kbytes, miss rate = 6.5%, hit cost = 3 cycles, miss cost = 20 cycles

 Average cost of memory access = (0.935 x 3) + (0.65 x 20) = 4.105 cycles

Case III: Cache size = 8Kbytes, miss rate = 5.565%, hit cost = 5 cycles, miss cost = 20 cycles

 Average cost of memory access = (0.94435 x 2) + (0.05565 x 20) = 4.8904 cycles

In case II, increase in cache size, certainly, improved the performance as average cost of memory

access is decreased. However, in case III, increase in cache size added more cycles for memory

access in average.

Advanced RAM

A. Fast Page Mode Dram (FPM DRAM)

FPM DRAM is asynchronously controlled which is designed with some improvements on the basic

DRAM architecture. In this design, each row of the memory bit-array is viewed as a page which

contains multiple words. Each word is addressed by a unique column address. In its operation, first

the row or page address is sent and then the corresponding column address must be sent to read a

particular word. In each memory cycle, three data words can be read consecutively by providing

their corresponding column address. Hence, it eliminates the requirement of extra cycle as three

cycles would have been required to read three words.

B. Extended Data Out DRAM (EDO DRAM)

EDO DRAM is similar to FPM DRAM with additional feature that reduces the read/write latency.

Here, new access cycle can be started while keeping the data output of previous cycle active. In

simple words, new column address can be sent while reading previously selected word from the

 Chapter 4 - Memory

21

memory. This results in overlapping of the operation which reduces the latency of memory access.

However, extra output latch must be introduced in the architecture.

C. Synchronous DRAM (SDRAM)

In SDRAM, the information is latched to and from the controller on the active edge of the clock

signal. The time required to detect the strobe signals in asynchronous DRAM is eliminated by

SDRAM. This DRAM architecture can have additional column address counter which holds the

starting address of the data to be accessed. This counter is incremented internally to provide new

data in each clock cycle as long as the data required are consecutive memory locations. The

enhanced synchronous DRAM (ESDRAM), is the improved version of the SDRAM. ESDRAM provides

faster clocking and lower latency in reading and writing data.

D. Rambus DRAM (RDRAM)

Rambus represents the bus interface architecture which uses multiplexed address/data lines to

connect the processor to the RDRAM device. RDRAM may be further divided into number of banks

with each remain open for access. Multiple open page scheme and fast bus I/O can result in high

throughput. However, as compared to other standards, Rambus showed increase in latency, heat

output, complexity, and cost. Requirement of heat-spreaders along with packet demultiplexors

makes it more complex while manufacturing. More complex interface circuitry and more number of

memory banks increased the size and resulted to become expensive.

E. Double Data Rate SDRAM (DDR SDRAM)

The DDR SDRAM is capable of making higher transfer rates with more strict control of the timing of

the data and clock signals. The interface transfers data on both the rising and falling edges of the

clock signal to double the data bus bandwidth. DDR SDRAM also known as DDR1 was replaced by

DDR2 which operated on same principle but for higher clock frequency and produced double

throughput as compared to DDR1. Similarly, DDR3 and DDR4 offered better performance for

increased bus speed and new features.

Memory Management Unit (MMU)

Memory Management Unit is a processor which translates the logical address to physical memory

address. MMU has important role in handling DRAM refresh, bus interface and arbitration used in

memory. In addition, it takes care of memory sharing among multiple processors. Contemporary

CPUs have built-in MMU as a part of processor.

Chapter 5 - Interfacing

1

 Communication Basics

 Microprocessor Interfacing

o I/O Addressing

o Interrupts

o Direct Memory Access

 Arbitration

 Multilevel Bus Architectures

 Advanced Communication Principles

 Serial, Parallel and Wireless Protocols

Chapter 5 - Interfacing

2

5.1 Communication Basics

Basic terminology

Wires are the connecting lines of two terminals in communication system. It may be uni-directional

or bi-directional. A single line can be used to represent multiples wires with the help of small angled

line drawn through it.

Bus refers to the set of wires with a single function. Address bus for address, data bus for data are

two examples of single functioned buses. Bus can also be the entire collection of wires. System bus,

for instance, consists of address, data and control lines.

Port is the actual conducting device on periphery which connects bus to processor or memory or

other devices. Port is a medium through which a signal is input to output from the processor. Port is

also referred as pin which extends from the IC package and that can be plugged into a socket (IC

base) on a printed circuit board. Metallic balls instead of pins may be present. However, metal pads

are more common these days.

Figure 5.1: A simple bus example

Timing diagram is a diagrammatic representation for describing hardware protocol. In the diagram,

time proceeds to the right along x-axis. It represents state of control lines or data lines. The control

lines may be either low or high, whereas the data lines – address or data -- can be valid or not valid.

Active high means that a one on the line makes it active while active low means that a zero on the

line makes it active. Asserting a line means making it active and de-asserting the line deactivates the

line. A protocol may have several sub-protocols which are also called bus cycle or transaction. A bus

cycle may consist of several clock cycles.

Example: Timing diagram for read protocol

The timing diagram of memory read protocol gives the following information to the designer

 The processor must set the rd’/wr line low for a read operation

enable

Processor

Memory

rd’/wr

addr[0-11]

data[0-7]

Chapter 5 - Interfacing

3

 Address of memory must be placed on addr line for atleast tsetup time before setting the

enable line high.

 Setting enable line high will cause memory to place the data on the data line after at time

tread.

Figure 5.2: Timing Diagram: Memory read protocol

Basic Protocol Concepts

An actor is a device that can be processor or memory which takes part in data transfer. Actor can be

a master or a slave. A master initiates the data transfer whereas a slave responds to the initiation

request.

Data direction represents movement of data among actors. The direction of data is independent of

type of actor. Either master or slave can send or/and receive data.

Addresses represent a special kind of data which specify a location in memory, a peripheral, or a

register within a peripheral. A protocol often includes both an address and data. In every memory

access protocol, the address specifies the location where the data should be read from or written to

in the memory.

Time multiplexing represents a technique in which the multiple sets of data are sent one at a time

over the shared line. Number of wires requirement can be reduced to a single line at the expense of

time. The following figures show the examples of time multiplexing. In both cases, single bus is used

to send multiple data at different time instant.

rd'/wr

enable

addr

tread

data

tsetup

Chapter 5 - Interfacing

4

Figure 5.3: Time-multiplexed data transfer: data serialization and address/data muxing

Control methods are schemes for initiating and ending the data transfer. Strobe and handshake are

two common control methods.

Strobe Protocol

In strobe protocol, master uses a control line and activates it to initiate the data transfer. Then the

slave has certain time to put data on data bus. Assuming data to be valid, master reads the data

from data bus and deactivates its control line. And both actors are ready for next data transfer. The

main disadvantage of strobe protocol is that the master that initiates the transfer has no way of

knowing whether the slave has received the data or not.

Figure 5.4: Strobe Protocol

The flow in timing diagram can be explained as:

1. Master asserts req to receive data

2. Servant puts data on data line within time taccess

3. Master receives data and deasserts req

4. Servant ready for next request

req
Master

data

Mux

Slave

data

Demux

Data(8)

15:8 7:0

req

Data

req

addr/data

Slave

addr

Demux

data

Master

Mux

addr data

addr data

req

addr/data

Master

Servant

req

data
data

2 4

1 3 req

taccess

Chapter 5 - Interfacing

5

Handshake Protocol

In this protocol, servant uses extra line to acknowledge that the data is ready. Initially, master

asserts request line to start the transfer. Then the servant, taking its time to put data on data line,

asserts acknowledge line to inform the master that the data is ready. Next, the master reads the

data from the data line and deasserts the request line which is followed by slave deasserting

acknowledge line. Finally the transfer is complete and both actors are ready for next transfer.

Though the protocol is somewhat complex, it is more reliable compared to strobe protocol as data

availability is confirmed by the sending device.

Figure 5.5: Handshake Protocol

The flow, as indicated by numbers, in timing diagram can be summarized as:

1. Master asserts req line to receive data

2. Servant puts data on data line and asserts ack

3. Master receives data from data bus and deasserts req

4. Servant ready for next transfer

Strobe/Handshake Compromise

A compromise protocol can be used to achieve the speed of strobe protocol and varying response

time tolerance of handshake protocol. As represented in figure 5.6, servant can use wait line, if it is

not ready to put data on data line.

 If the servant can put data within time taccess then it follows strobe protocol representing fast

response. And wait line remains unused in this protocol.

 If the servant can’t put the data within taccess time then it asks master to wait longer by

asserting wait line. After the data is ready, the wait line is deasserted by servant and master

receives the data. And it represents slow response as master has to wait for certain time for

the data transfer

Master

Servant

req

data

ack 2 4

1 3 req

ack

data

Chapter 5 - Interfacing

6

Figure 5.6: A strobe/handshake compromise: fast and slow response

The flow as indicated by numbers in timing diagram can be summarized as:

For fast response

1. Master asserts req line to receive data

2. Servant puts data on data bus within time taccess, wait line remains unused

3. Master receives data and deasserts req

4. Servant ready for next request

For slow response

1. Master asserts req to receive data

2. Servant can’t put data within taccess, asserts wait line

3. Servant puts data on bus and deasserts wait

4. Master receives data and deasserts req

5. Servant ready for next request

Example: The ISA Bus Protocol – Memory Access

The Industry Standard Architecture bus protocol is common in systems using an 80x86

microprocessors. The processor uses 20-bit memory address and follows compromise

strobe/handshake protocol. If the memory is not ready then the processor inserts wait cycles. Four

cycles is default for the operation to complete. For the read operation, in the first clock cycle the

processor puts address on the address line and asserts address latch enable signal. During second

and third clock cycle, the processor asserts memory read signal. After third clock cycle, the data is

Master

Servant

req

data

wait

data

4
2

1 3 req

wait wait

data

2 3

req
1 4

5

taccess

Chapter 5 - Interfacing

7

available on data lines. Finally are signals are deasserted at fourth clock cycle. The timing diagram

for memory read operation and memory write operation is shown in the figure below.

Figure 5.7: ISA bus protocol – read bus cycle

Figure 5.8: ISA bus protocol – write bus cycle

For Write Operation

 In C1, processor puts 20 bit address memory address on the address line and asserts ALE

signal.

 During C2 and C3, the processor puts the data on the data line and asserts MEMW signal to

enable write operation. However, if the memory, when not ready, deasserts CHRDY signal in

C2 then processor inserts wait cycles until CHRDY is reasserted.

 In cycle C4, all signals are deasserted.

Data

Address

Address

Data

Cycle

Clock

D[7-0]

A[19-0]

ALE

/MEMR

CHRDY

C1 C2 WAIT C3 C4

Cycle

Clock

D[7-0]

A[19-0]

ALE

/MEMR

CHRDY

C1 C2 WAIT C3 C4

Chapter 5 - Interfacing

8

5.2 Microprocessor Interfacing

A. I/O Addressing

Port based I/O

In port based I/O, a port can be directly read from or written into with the help of processor

instructions. It is also referred as parallel I/O. Generally the devices may be provided with one or

more N-bit ports to facilitate port based I/O and each port is bit addressable. For example, 8051,

AVR microcontrollers have 8 bit I/O ports. In 8051, P1 = 0xF7 statement will write into Port 1 of

microcontroller. Also, for bit addressing, P2.4 = 1 will set the pin 4 of Port 2.

The port based I/O can be extended using appropriate peripheral which extends the number of

available ports from four to six. Each port on peripheral is associated with a register that can be read

or written into by the processor.

Figure 5.9: Port Based I/O and Extended Parallel I/O

Bus based I/O

In bus based I/O, the processor has address, data and control lines for I/O addressing. The

communication protocol is built into the processor. A single instruction is available which causes the

hardware to write or read data. If a system with bus based I/O requires parallel I/O then parallel I/O

peripheral can be connected to the system bus.

Figure 5.10: Bus-based I/O and Extended bus-based I/O with parallel I/O peripheral

Port 1

Port 2

Processor

Parallel I/O

Peripheral

Port 0

Port 3
Port A

Port B

Port C

Port 1

Port 2

Processor

Port 0

Port 3

Processor

Memory

Parallel I/O Peripheral

Port A Port B Port C

System Bus

Processor

Memory

Device1 Device2

System Bus

Chapter 5 - Interfacing

9

Memory-Mapped I/O

Memory-mapped I/O is a type of bus-based I/O addressing for a processor to communicate with

peripherals in which peripherals are addressed using the specific existing address space. The total

address space is divided into memory address and peripheral address. Hence, there is loss of

memory addresses to peripherals. Also, no special instructions for peripherals are required for data

transfer, since instructions like MOV used for memory will also work with peripherals.

Example: A bus with 16 bit have total of 65536 addresses. So, lower 32768 addresses may

correspond to memory address while upper 32768 correspond to I/O addresses.

Standard I/O

Standard I/O is a type of bus-based I/O addressing in which extra control line (M/IO) is used to

indicate whether the address represents memory location or peripheral. Memory locations and

peripherals use all sets of address for addressing, so there is no loss of memory addresses. This

addressing, however, requires special instructions. MOV, LOAD instructions for memory while IN,

OUT for peripherals. Also the address decoding logic for peripherals is simple as the high order

address bits can be ignore when the number of peripherals is less.

Example: A bus with 16 bit have total of 65536 addresses. All 65536 addresses can be used to

address memory and peripheral. The M/IO line is used to select either memory or peripheral. If

M/IO is zero then the address on the address bus corresponds to a memory address.

Example: The ISA Bus Protocol – Standard I/O

Figure 5.11: ISA bus protocol for standard I/O

Address

Data

Cycle

Clock

D[7-0]

A[19-0]

ALE

/IOR

CHRDY

C1 C2 WAIT C3 C4

Chapter 5 - Interfacing

10

Example: A Basic Memory Protocol

Figure 5.12: A Basic Memory Protocol for 8051 microcontroller: Timing diagram for read operation.

Read Operation in 8051 microcontroller

 Microcontroller places source address on ports P2 and P0. Port 2 holds 8 most significant

address bits and retains its value throughout the read operation. Port 0 holds the eight least-

significant address bits which is stored using a 8-bit latch.

 The ALE signal is used to trigger the latching of port P0. And controller asserts high impedance

on P0 to allow memory device to drive it with requested data. The memory outputs valid data as

long as RD signal is asserted. The microcontroller reads the data and deasserts its control can

port signals.

B. Interrupts – Interrupt Driven I/O

The peripherals may require service from the processor which is very much unpredictable. So there

is an issue on how to serve the peripherals by the processor as it remains busy on its own task.

Polling and interrupts are two basic methods to address that issue.

1. Polling is a method in which the processor checks for service requirement of every peripheral.

This method, though, is easier and simple to implement, the repeated checking, however,

wastes many clock cycles which could have been used to do certain useful work.

2. Interrupt is a feature of the processor through which the peripherals can request for service

even when processor is busy in its own task. For external interrupt, there is always a pin

available to implement interrupt feature. Whenever the interrupt pin is asserted, the processor

jump to a particular address at which the routine for the interrupt is stored. Interrupt

Addr [7..0] Data

Addr [15..8]

Addr [7..0]

P0

P2

Q

ALE

/RD

Chapter 5 - Interfacing

11

overcomes the limitations of polling, but interrupt, in itself, is the type of polling. The pin is

checked after the execution of every instruction, so it does not requires extra clock cycles.

Interrupt address vector represents the address in which the interrupt service routine (ISR)

resides. Fixed interrupt and vectored interrupt are two common methods by which the

processor obtains the address of ISR.

In fixed interrupt, the address of subroutine is built into microprocessor and remains fixed.

Programmer simply has to store the ISR at that location or can put jump instructions to move to

actual location of ISR where programmer has saved. Suppose a data from sensor (peripheral1) is

to be read, processed and then a motor (peripheral2) is controlled based on calculated data. The

flow of actions can be summarized as:

 Peripheral1 has data in its register; meanwhile the processor is executing its main program.

 Peripheral1 asserts INT to request service from the processor.

 After execution of each instruction, the processor checks INT pin. So processor detects the

service requirement. It saves its present context and sets the PC to the fixed ISR location.

 The ISR is executed which reads data from peripheral1, modifies it and sends the resulting

data to peripheral2. At the same time, peripheral1 deasserts INT after data is read from it.

 The processor retrieves its state and resumes its work.

In vectored interrupt, peripheral must provide the address to the processor. In this method,

along with INT pin, INTA pin is also required to acknowledge that the interrupt has been

detected and the peripheral can provide the address of relevant ISR using system bus. The

peripheral provides the address through the data bus which is read by microprocessor.

The flow of actions can be summarized as:

 Peripheral1 has data in its register; at the same time the processor is executing its main

program.

 Peripheral1 asserts INT to request service from the processor.

 After execution of each instruction, the processor checks INT pin. So processor detects the

service requirement and it asserts INTA.

 Peripheral1 detects INTA and puts interrupt address vector on the data bus.

Chapter 5 - Interfacing

12

 Processor jumps to the address read from data bus and executes its corresponding ISR. It

reads data from peripheral1 processes it and sends the result to the peripheral2. Meanwhile

peripheral1 deasserts INT after data is read from it.

 The processor retrieves its state and resumes its work.

In interrupt address table, which is a compromise between fixed and vectored interrupt

methods, a table with ISR addresses is stored in memory of processor. A peripheral instead

provides the number, rather than the address of ISR, corresponding to an entry in the table. One

major advantage is that the bit requirement to address the table is very less compared to

number of bits of real address of ISR. Also it provides the flexibility to assign and change the

location of ISR.

Additional Interrupt Issues

External interrupts may be maskable or nonmaskable. In maskable interrupt, the programmer

can use specific instruction to disable the interrupt by configuring certain bits of interrupt

register. It is important when more critical works need to be executed first. Nonmaskable

interrupt cannot be disabled by the programmer. It requires a separate pin for drastic situations.

For instance, if power fails, the nonmaskable interrupt can cause a jump to a subroutine that

stores critical data in non-volatile memory, before power is completely gone.

Another issue regarding the interrupt is jump to ISR in which the microprocessor either saves

complete context or partial state before jumping to ISR. Some processors save PC, registers

which consumes many cycles, while others save the content of PC only. The ISR, however, must

not modify registers if its content is not saved.

C. Direct Memory Access – DMA controller

INTRODUCTION

When the communication between memory and peripherals involves microprocessor then there

will, somehow, always be waste of processor’s time. Since the speed of the processor and

peripherals may not match, data must be stored temporarily before processing which is referred as

buffering. Buffering will, certainly, impact on system performance. Also while using interrupt

feature, the storing and restoring of state of processor is an inefficient process, since this process

requires many clock cycles. And, the regular program stalls during transfer of data causing more

problems in the performance of the system. So, a separate single-purpose processor called a DMA

Chapter 5 - Interfacing

13

controller is required which relieves processor from all data transfers involving memory and

peripherals.

DMA controller is specifically used to transfer data between memories and peripherals. The

peripherals request the service from DMA controller which then requests control of the system bus

from processor. After that, processor relinquishes the system bus. Finally, the data transfer between

memory and peripheral is initiated by DMA controller without the involvement of processor. Hence,

the overhead required for storing and restoring the state is eliminated. Also, the processor can

continue its regular task unless it requires the system bus or the particular data being transferred.

BLOCK DIAGRAM

The simple block diagram of system involving DMA controller is shown in the figure below:

Figure 5.13: Simple system with DMA Controller

OPERATION

The flow of action for the transfer of data between peripheral and memory using DMA can be

summarized as:

 Initially, processor is busy executing its main program.

 After peripheral has data within its register it asserts request line for service from DMA.

 DMA asserts request signal to request the system bus from processor.

 Processor releases the system bus after seeing the request from DMA, and acknowledges about

it to DMA.

 DMA asserts acknowledge signal to peripheral, and starts transfer of data as requested.

 After the completion of transfer, all control lines are deasserted and processor retakes the

control of the system bus.

Program

Memory

Microprocessor

Data Memory

DMA

controller

Peripheral req Dreq

ack Dack

System Bus

Chapter 5 - Interfacing

14

5.3 Arbitration

Arbitration is the mechanism through which a service or shared resource is provided to particular

requesting device, out of many contenting devices for service.

A. Priority Arbiter

INTRODUCTION

Priority arbiter is a single purpose processor which is used to arbitrate among various requests from

peripherals. Each of the peripherals, which are connected to the arbiter, can make request for the

service. Using certain priority mechanism, arbiter selects a peripheral to permit the required service.

The figure 5.14 shows the priority arbiter connected with peripherals which use vectored interrupt

to request service and processor which provide service to the peripherals. Arbiter is connected to

system bus for configurations only. The configurations may include setting priorities of the

peripherals.

The main advantage of this arbitration is that it can support advanced priority schemes. Also, failure

of single peripheral does not have any impact on the operation of whole system. The system,

however, must be redesigned if new peripherals are to be added. So, this method is less flexible if

new peripherals are required to be added or removed.

BLOCK DIAGRAM

Figure 5.14: Arbitration using a priority arbiter

OPERATION

The stepwise operation of arbitration using priority arbiter is listed below:

 Initially, microprocessor is busy in its own operation.

Microprocessor

Inta

Int

Priority Arbiter

Ireq1

Iack1

Ireq2

Iack2

Peripherals 1 Peripherals 2

System Bus

Chapter 5 - Interfacing

15

 Both peripherals can assert request to priority arbiter which interrupts processor when at

least one request is available from peripherals.

 Processor stops its current operation, stores its state and asserts interrupt

acknowledgement signal.

 After acknowledged by processor, priority arbiter asserts acknowledge signal to any one

peripheral based on priority.

 The selected peripheral puts its interrupt address vector on the system bus.

 Microprocessor reads ISR address from data bus and jumps into its, executes the ISR.

 After execution of requested ISR, processor retrieves its state and resumes its operation.

TYPES OF PRIORITY ARBITER

The priority among peripherals can be determined based on, basically, two schemes; fixed priority

or rotating priority.

Fixed Priority

Each peripheral is assigned a unique rank. If two peripherals simultaneously request for service then

the arbiter chooses the one with the higher rank. Such method is efficient when there is a clear

distinction in priority among peripherals. But it can cause high-ranked peripherals to get much more

servicing than other peripherals.

Rotating priority or Round – robin priority

In this method, each peripheral gets almost equal time for service from the arbiter. This priority

method is efficient when there is not much difference in priority among peripherals. The priority of

peripherals changes based on the history of servicing of those peripherals, so the arbiter can get

more complex in rotating priority.

B. Daisy-Chain Arbitration

INTRODUCTION

In daisy-chain arbitration, peripherals are connected to each other in daisy-chain manner. The

arbitration is build within the peripherals with each having a request and acknowledge signals as

shown in the figure 5.15. The request signal and acknowledge signals flow through the peripherals:

peripheral’s request signal flows downstream to processor and processor’s acknowledge signal

flows upstream to requesting peripheral. The peripheral connected first to the processor has the

highest priority while the peripheral at the end of chain has lowest priority.

Chapter 5 - Interfacing

16

The main advantage of this arbitration method is that one can easily add or remove peripherals

from the system without the requirement of system redesign. This method, however, does not

support rotating priority. Also, if one peripheral is damaged in the chain, other peripherals beyond

that broken point will remain inaccessible as signal cannot pass through the chain.

BLOCK DIAGRAM

Figure 5.15: Daisy Chain Configuration

OPERATION

Suppose peripheral 2 requires service from the processor then the operation can be summarizes as:

 Microprocessor is busy in executing its own program.

 The request signal from peripheral 2 is send to processor through the peripheral 1 and

interrupt pin is asserted.

 Processor stops its current work, stores its state, and asserts acknowledgement signal.

 The acknowledgement signal reaches to peripheral 2 through peripheral 1. Since the request

is not generated by peripheral 1, it passes the acknowledge signal to peripheral 2.

 Peripheral 2 puts its interrupt address vector on the system bus.

 Microprocessor reads ISR address from data bus and jumps into its, executes the ISR.

 After execution of requested ISR, processor retrieves its state and resumes its operation.

Daisy Chain aware peripherals

Generally, peripherals have acknowledge input and request out lines but daisy chain aware

peripherals must have additional acknowledge output and request input lines. However, if the

peripherals do not contain acknowledge output and request input lines then they will not be daisy

chain aware peripherals. But they can be made daisy chain aware by certain logic whose complexity

PROCESSOR

INTA

INT

PERIPHERAL 1

ACK_IN ACK_OUT

REQ_OUT REQ_IN

PERIPHERAL 2

ACK_IN ACK_OUT

REQ_OUT REQ_IN

System Bus

Chapter 5 - Interfacing

17

may increase based on complexity of system. One simple example for making a peripheral daisy

chain aware is shown in the figure below.

Figure 5.16: Simple Logic to make Daisy Chain Aware

Case 1: When request is from downstream peripherals

 Peripheral (P) does not participate in the flow of signal

Case 2: When request is from upstream peripherals beyond peripheral (P)

 REQ_IN = 1 but REQ = 0, resulting in REQ_OUT = 1

 ACK_IN = 1 and REQ = 0, resulting in ACK_OUT = 1

Case 3: When request is from peripheral (P)

 REQ = 1, REQ_IN = X (don’t care), resulting in REQ_OUT = 1

 ACK_IN = 1 and REQ = 1 resulting in ACK = 1 and ACK_OUT = 0

C. Network-Oriented Arbitration

In network oriented arbitration, arbitration is done for multiple microprocessors sharing a common

to form a network. Arbitration is build into the bus protocol, as bus is the only the medium that

connects multiple processors. However, multiple processors may try to access the bus

simultaneously resulting in data collision. The protocol must be designed in such a way that the

contending processors don’t start sending the data at the same time. Also some statistical methods

can be used so as to make chances of data collision very rare, if not eliminate it. Some protocols use

efficient address encoding schemes in which higher priority address will override the lower-priority

one.

Peripheral (P)

ACK

REQ

ACK_OUT ACK_IN

REQ_OUT REQ_IN

Chapter 5 - Interfacing

18

5.4 Multilevel Bus Architectures

Multilevel bus architectures are implemented in the system to improve the overall performance of

the system. One can easily presume a single high-speed bus would be enough for all the

communications in the system. But, however, there are various drawbacks of using single high

speed bus. Few of them are discussed in the following paragraph.

Inefficient interface

For a single high speed bus, each peripheral requires a high-speed bus interface. But the peripherals

may not need such high-speed transfer resulting in extra power consumption, increase in number of

gates, and high cost. Also, the high-speed bus can be very processor specific which can lead the

interface of a peripheral to be non portable.

Slower bus

When many peripherals are connected to a single bus, all peripherals may not get the access to the

bus when required. This condition results to slow down the speed of transfer, hence it can create a

performance lag.

Two Level Bus Systems

Generally, two level bus systems consist of a high-speed processor local bus, a lower-speed

peripheral bus and a bridge to connect two buses.

Figure 5.17: A two-level bus architecture

 The processor local bus connects very high speed devices such as microprocessor, cache,

memory controllers, and certain high-speed coprocessors. These buses are wide, as wide as a

memory word and frequent communication takes place through it.

Microprocessor Cache
Memory

Controller

DMA

Controller

Peripheral Bridge Peripheral Peripheral

Processor-local bus

Peripheral bus

Chapter 5 - Interfacing

19

 On the other hand, the peripheral bus connects to those peripherals which do not have access

to processor-local bus. It emphasizes on portability, low power, or low gate count. It is often

narrower and slower than a processor local bus. The frequency of communication through

peripheral bus is also less as compared to that of processor local bus. So the interface for

peripheral bus is comparatively efficient one in terms of number of pins, gates and power

consumption.

 A bridge is a single purpose processor that connects the two buses of the system and also makes

the various conversions required. Speed synchronization is another important function of

bridge. Data speed and data formats of processor-local bus is different to that of peripheral bus,

such problem is resolved by bridge using various mechanisms.

Three level bus hierarchy

Three level bus systems consist of processor local bus, system bus and peripheral bus. A local bus

connects the processor to a cache and may support one or more local devices. The system bus,

acting as high-speed bus, offloads much of the traffic from the processor local bus. And the

peripheral bus is used to connect various peripherals in the system.

5.5 Advanced Communication Principles

Parallel Communication

In parallel communication, the physical layer carries multiple bits of data at a time. With each wire

carrying a single bit, the bus consists of data wires along with control and power lines.

Advantages

 High data throughput: Many bits are transferred at a time.

 Less complexity: Easily implemented in hardware requiring only a latch to copy data onto a

data bus.

Disadvantages

 Long parallel wires can result in Ferranti Effect. And according to this effect, there is a

voltage build up due to capacitance and voltage at receiving end becomes more than that of

sending end.

 Little variation in wire length can cause data misalignment as the bits at the receiving ends

with reach at different time.

 It is more costly to construct and can make system bulky. The cost further increases if

insulation of wires to prevent the interference is considered.

Chapter 5 - Interfacing

20

Usage

 It is used to connect devices which reside on the same circuit board or same IC.

Serial Communication

In serial communication, the physical layer carries one bit of data at a time. With all bits of data

passing through the single wire, the bus is composed of single data wire along with control and

power lines.

Advantages

 Significant reduction in the size, the complexity of the connectors and the associated costs.

 Throughput can be better for two distant devices as compared to parallel communication of

two distant devices.

 It does not exhibit Ferranti effect and data misalignments.

Disadvantages

 Complex interfacing logic and communication protocols; the data are decomposed into bits

at sending end, which must be assembled properly at receiving end.

 For short distance communication, its throughput is very less as compared to that of parallel

communication.

Usage

 It is used to connect distant devices. But it doesn’t mean that it cannot be used to connect

devices at short distance. However, it is more efficient for distant communications

Wireless Communication

In wireless communication, the devices do not need to be connected physically for data transfer.

Infrared and radio frequency channels are used as a physical layer.

Infrared wave

Infrared wave, which cannot be seen by naked eye, uses electromagnetic wave frequencies that are

below the visible light spectrum. Infrared waves are generated using infrared diode whereas

infrared transistors are used to detect the infrared emitted by infrared diode. Such infrared

transistors conduct when exposed to infrared wave. One advantage of infrared communication is

that it is cheap to build transmitters and receivers. But the main disadvantage of this sort of

communication is that it requires line of sight between the two devices participating in

Chapter 5 - Interfacing

21

communication. Also the range of communication is low, which makes it an inefficient method of

communication for distant devices.

Radio Frequency

Radio frequency uses electromagnetic wave frequencies in the radio spectrum. For such

communication, analog circuitry as well as an antenna is required at communicating devices. The

main advantage of this type of communication is that the line of sight is not required. Also the

longer distance communication is possible. The range of communication is dependent on the

transmission power. But building transmitters and receivers can be complex and costly in Radio

Frequency communication.

Layering

Layering the communications process means breaking down the communication process into

smaller and easier to handle interdependent categories, with each solving an important and

somehow distinct aspect of data exchange process. Layering can also be viewed as a hierarchical

organization of a communication protocol where lower levels of the protocol provide services to the

higher levels. The main objective is to break the complexity of a communication protocol into simple

levels which ensures easier handling and simplified design. The physical layer provides the lower

level services of sending and receiving bits or words of data, whereas the application layer provides

the high level service to the user.

Error Detection and Correction

Error detection is the process of detecting errors that may occur during the transmission of data in

any communication process. Errors can be bit error or burst of bit errors. In bit error, single bit in the

transmitted data is invalid. But in case of burst of bit errors, more than one bit gets changed.

Error correction is the process of correcting the bits that were detected during communication

process. Parity and checksum are two basic error correction methods.

In parity check, extra bit is send along with data to provide additional information about the data. If

extra bit makes an odd number of 1s in data word bits plus parity bit then it is referred as odd parity

otherwise it will be even parity. The parity of data must be check at both ends of communication

and the parity of the data sent must be same to that of parity of data received. This type of checking

Chapter 5 - Interfacing

22

method is efficient for single bit error but can create problems for burst of bit errors as it is not able

to detect change in even number of bits.

Example:

Data of 7 bits – 0011010

Transmitted data with even parity – 00110101

Received data with parity – 10110101, it indicates error as it should have an even parity.

Received data with parity – 10010101, change in two bits and error not detected.

In checksum error checking, multiple words of data in packets are checked for error. The extra word

which represents the XOR sum of all data words in a packet is transmitted along with packet.

Though it can be implemented for burst of bits error, it does not account for all error combinations.

The transmitter sends the packet of data along with the checksum word which is checked at

receiving end on reception. If the checksum word is correct then it represents successful

transmission. However, few error combinations can generate the checksum word same as received,

in such case the error checking fails.

Example:

Data words of packet to be transmitted: 010101, 011101, 110011, 101100

Checksum word at transmitter: 010111 (XOR or all data words)

Received checksum word: 010111

Received data words of packet: 110101, 010101, 110011, 101100, error exists

Calculate Checksum word at receiver: 111111, checksum does not match, error check success.

Received data words of packet: 010101, 011101, 110011, 101100, error exists

Calculate Checksum word at receiver: 010111, checksum match, error check fails.

5.6 Serial, Parallel and Wireless Protocols

A. Serial Protocol

Inter-IC or I2C or I2C

I2C is a serial protocol for two-wire interface to connect low-speed devices like microcontrollers,

EEPROMs, A/D and D/A converters, I/O interfaces and other similar peripherals in embedded

systems. The I2C has 7-bit or 10 bit address space. Seven bit addressing allows a total of 128 devices

to communication over a shared I2C bus. The common speed of I2C bus is 100 Kbit/s in standard

Chapter 5 - Interfacing

23

mode and 10 Kbit/s in low-speed mode. Recent revisions of I2C can host more nodes and run at

faster speeds: 400 Kbit/s in Fast mode, 1 Mbit/s in Fast mode plus and 3.4 Mbit/s in High speed

mode. I2C uses only two wires: SCL (serial clock) and SDA (serial data). Length of the wires is not

limited as long as the total bus capacitance is less than 400pf.

Figure 5.18: I2C bus structure

Figure 5.19: Timing diagram of a typical read/write cycle

A typical I2C byte write cycle operates as follows:

 The master initiates the transfer with a start condition. Start condition is represented by a

high to low transition of SDA line while the SCL is held high.

 Then, the address of the device to which the data is to be written is sent with most

significant bit down to the least significant bit.

 For write operation, the master sends a zero after sending the address. And the slave

acknowledges the transmission by holding the SDA line low during first ACK clock cycle.

 Next, the master transmits a byte of data with most significant bit first.

 The slave acknowledges the reception of data by holding the SDA line low during second

ACK clock cycle.

 Finally, master terminates the transfer by generating a stop condition. Stop condition is

represented by a low to high transition of SDA line while the SCL is held high.

Microcontroller

Master

ADC

Slave

EEPROM

Slave

Sensor

Slave

SCL

SDA

VDD
Rp

R\ ACK START
A6 A5 A0

W
D8 D7 D0

STOP ACK

From Servant From Receiver

C

D

Chapter 5 - Interfacing

24

Serial Peripheral Interface (SPI)

The serial peripheral Interface bus is a synchronous serial communication interface specification

used for short distance communication. It is used to send data between processors/controllers and

small peripherals. It uses separate clock and data lines along with a select line to choose the device

that should be communicated with. The SPI bus consists of four logic signals: SCLK – serial clock,

MOSI – Master Output Slave Input, MISO – Master Input Slave Output, and SS – Slave select. The SPI

bus can operate with a single master device and with one or more slave devices. Full duplex

communication, higher throughput, simple software and hardware implementation, etc are few

characteristics of SPI protocol.

Control Area Network (CAN)

CAN is an International Standardization Organization (ISO) defined serial communications bus

originally developed for the automotive industry to replace the complex wiring harness with a two

wire bus. The specification calls for high immunity to electrical interference and the ability to self-

diagnose and repair data errors. These features have led to CAN’s popularity in a variety of

industries including building automation, medical, and manufacturing.

Some of the characteristics of the CAN protocol includes high-integrity serial data communications,

real-time support, data rates up to 1 Mbit/s, error detection and confinement capabilities. Balanced

differential signaling in CAN protocol not only reduces noise coupling but also allows high signaling

rates over twister pair cable. The CAN protocol incorporates five methods of error checking which

forces transmitting node to resent the message until it is received correctly. But if the error limit is

reached then the faulty node is deprived of transmit capability. Faulty nodes are automatically

dropped from the bus, which prevents any single node from bringing a network down. This error

containment also allows nodes to be added to a bus while the system is in operation, otherwise

known as hot-plugging. It implements a non destructive, bit-wise arbitration in which the node

winning arbitration continues with the message without being corrupted by another node. The high

speed ISO 11898 standard specifications are given for a maximum signaling rate of 1 Mbps with a

bus length of 40m with a maximum of 30 nodes.

To summarize, the protocol defines data packet format and transmission rules to prioritize

messages, guarantee latency times, allow for multiple masters, handles transmission errors,

Chapter 5 - Interfacing

25

retransmit corrupted messages, and distinguish between a permanent failures of a node versus

temporary errors

FireWire

FireWire is a serial bus protocol for high-speed data transfer. It was initiated by Apple and

developed by IEEE P1394 group so may refer this protocol as IEEE 1394. It supports mass

information transfer and allows peer to peer device communication without the involvement of

system memory or CPU. Some of the characteristics of FireWire protocol include transfer rates up to

400 Mbit/s, plug and play and hot swapping, packet based layered design structure and provision of

power through the cable. Also, the 64 bit addressing allows a local-area network to consist of 1023

sub-networks, each consisting of 63 nodes. FireWire devices are organized at the bus in a tree or

daisy chain topology. In arbitration, the closest node requesting for the data transfer gets the high

priority. It provides two types of data transfer: asynchronous and isochronous. In asynchronous,

data transfer can be initiated as a given length of data arrives in a buffer. But, in isochronous data

transfer, data flows at a pre-set rate.

Universal Serial Bus (USB)

The Universal Serial Bus (USB) protocol was designed to connect a wide range of peripherals to a

computer, including pointing devices, displays, data storage, communication devices and other

devices. It standardized the connection of computer peripherals to personal computers, both to

communicate and to supply electric power. The original USB 1.0 specification defined data transfer

rates of 1.5 Mbit/s for low data rate devices and 12 Mbit/s for high speed devices. The transfer rate

for USB 2.0 is 480 Mbit/s while for USB 3.0 it can go up to 5 Gbit/s. USB On-The-Go is the special

feature of USB in which two USB devices communicate with each other without requiring a separate

USB host. USB uses a tiered star topology, which means some USB devices can serve as connection

ports for other USB peripherals. USB hubs and standalone hubs can be used to provide handful of

convenient USB ports. USB host controllers manage and control the driver software and bandwidth

required by each peripheral connected to the bus.

B. Parallel Protocols

PCI Bus

The Peripheral Component Interconnect (PCI) bus is a high-performance bus for attaching hardware

devices in a computer. It is synchronous bus architecture with all data transfers being performed

relative to a system clock. The maximum clock rate can go up to 66MHz; however, use of 33MHz is

Chapter 5 - Interfacing

26

very common in personal computers. So the transfer rate can vary from 132 to 512 MB/s. PCI

implements a 32-bit multiplexed address and Data bus which allows reduced pin count on the PCI

connecter resulting in lower cost and smaller package size. It supports rigorous auto configuration

mechanisms which allow identification of the type of device and the company that produced it. In

PCI, any device has the potential to take control of the bus and initiate transactions with any other

device making multiple master implementations easier which otherwise had been difficult.

ARM Bus

ARM bus was designed to connect and manage different function blocks in a system on a chip (SoC)

designs. It supports 32-bit data transfer and 32-bit addressing and is implemented using

synchronous data transfer architecture. The transfer rate is the function of the clock speed used in a

particular application. The ARM Advanced Microcontroller Bus Architecture is an open-standard for

on chip interconnection.

C. Wireless Protocols

Infrared Data Association (IrDA)

The infrared Data Association (IrDA) is an international organization that creates and promotes

infrared data interconnection standards. It provides specifications for a complete set of protocols for

wireless infrared communications. IrDA has been implemented in portable devices like smart

phones, laptops, cameras, etc. It is designed to support communication between two devices over

point to point infrared at speeds between 9.6 kbps and 4 Mbps. Simplicity and low cost of IrDA

hardware makes it an attractive option. Also, line of sight, very low bit error rate and physically

secure data transfer are few important features of IrDA. Other wireless technologies with no

requirement of direct line of sight have displaced IrDA. However, it is still applicable where

interference makes radio based wireless technologies unusable.

Bluetooth

Bluetooth is a wireless technology standard for exchanging data over short distances from fixed and

mobile devices. It operates at frequencies between 2402 and 2480 MHz which is the globally

unlicensed Industrial, Scientific and Medical (ISM) 2.4 GHz short-range frequent band. Since

Bluetooth uses a radio-based link, it does not require line of sight for communication. Bluetooth 4.0

may provide the transfer rate of up to 25Mbps. Bluetooth is a packet based protocol with a master-

slave structure and one master may communicates up to maximum of seven slave devices. Low

power consumption and short range based communication is the typical feature of Bluetooth.

Chapter 5 - Interfacing

27

Permitted transmission power and range of communication depend on the radios class. For class 3

radio, range is up to 1m with max permitted power of about 1mW. The range is about 10m and

2.5mW power is permitted in case of class 2 radios, and class 1 radios have a range of about 100m

and 100mW of transmission power. Handsfree headset and wireless speakers are two, out of many,

examples using Bluetooth.

IEEE 802.11

IEEE 802.11 is a set of media access control (MAC) and physical layer (PHY) specifications for

implementing wireless local area network. IEEE 802.11, often termed as Wi-Fi, has the data transfer

rate of around 1 - 2Mbps. IEEE 802.11 has a variety of standards, each with a letter suffix; 802.11a,

802.11b, 802.11g, 802.11n standards are quite common. All these 802.11 Wi-Fi standards operate

within the ISM frequency bands. Generally, 2.4 GHz band is common which also makes the chips

easier and cheaper to manufacture. The data rate can go up to 54 Mbps with some standard, while

few latest standards may support up to 6.75 Gbit/s.

The PHY layer defines the means of transmitting bits over a physical link connecting network nodes.

It provides an electrical, mechanical and procedural interface to the transmission medium.

Modulation, line coding, synchronization are few functions, out of many, performed by the physical

layer. The MAC layer provides the addressing and channel access control mechanism that ensures

the communication of several nodes within a shared medium. Each device is assigned a unique serial

number which is also known as MAC address. Unique MAC address makes it possible for data

packets to be delivered to a destination within a sub-network. Multiple access protocol allows

several stations connected to the same physical medium to share it. The most common multiple

access protocol is the contention based Carrier Sense Multiple Access with Collision Avoidance

(CSMA/CD) protocol.

Chapter 6 – Real Time Operating System

1

 Operating System basics

 Task Process and Threads

 Multiprocessing and Multitasking

 Task Scheduling

 Task Synchronization

 Device Drivers

Chapter 6 – Real Time Operating System

2

6.1 Operating System basics

The operating system acts as a bridge between the user applications/tasks and the underlying

system resources through a set of system functionalities and services. The primary function of an

operating system is

 Make the system convenient to use

 Organize and manage the system resources efficiently and correctly

The following figure shows the basic components of an operating system and their interfaces with

rest of the world.

Figure 6.1: Operating System Architecture

Comparison of General Purpose OS (GPOS) with Real Time OS (RTOS)

General Purpose Operating System is software that manages all the system resources and

provides common service to all programs running in the system. In case of real time

operating system, along with management and services it performs certain function within

a specified time constraint. However, both operating systems provide a number of services

to application programs and users. Application Programming Interfaces (API) or system calls

are the medium through which the services are accessed by the applications.

K
e

rn
e

l S
e

rv
ic

e
s

User Application

Memory management

Process management

Time management

File System management

I/O System management

Underlying hardware

Application

Programming

Interface (API)

Device Driver

Interface

Chapter 6 – Real Time Operating System

3

The differences between GPOS and RTOS can be clarified using following parameters.

 Deterministic nature

RTOS are deterministic in nature; the time required to execute the services is fixed.

However, there may not be fixed time defined for any service in case of GPOS.

 Task Scheduling

RTOS uses priority based preemptive scheduling, while scheduling in GPOS is defined

so as to achieve high throughput. In RTOS, high priority process execution will

override the low priority ones. In GPOS, high priority process may be delayed to

perform several low priority tasks.

 Time Critical systems

RTOS is used in time critical systems in which delay in processing can result in

undesirable consequences. However, GPOS are implemented in non time critical

systems.

 Preemptive Kernel

The kernel of an RTOS is preemptive where as a GPOS kernel is non preemptive. In

preemptive kernel, the high priority user process can preempt a kernel call. In other

words, the execution of low priority system process can be stopped by high priority

user process.

 Priority Inversion Problem

Priority Inversion problem is seen in RTOS in which the high priority task has to wait

for the shared resource occupied by low priority task. This results in execution of low

priority task first rather than high priority task.

A. The Kernel

The kernel is the core of the operating system and is responsible for managing the system resources

and the communication among the hardware and other system services. It acts as the abstraction

layer between system resources and user applications. The kernel contains different services for

handling the following.

Chapter 6 – Real Time Operating System

4

Process Management

It includes setting up the memory space for the process, loading the process’s code into the memory

space, allocating system resources, scheduling and managing the execution of the process, setting

up and managing the process control block (PCB), Inter Process Communication and

Synchronization, process termination/deletion, etc.

Primary Memory Management

The term primary memory refers to the volatile memory (RAM) where processes are loaded and

variables and shared data associated with each process are stored. The Memory Management Unit

(MMU) of the kernel is responsible for

 Keeping track of which part of the memory area is currently used by which process

 Allocating and De- allocating memory space on a need basis (Dynamic memory allocation)

File System Management

File is a collection of related information. A file could be a program, text files, word documents,

audio/video files, etc. Each of these files differs in the kind of information they hold and the way in

which the information is stored. The file operation is a useful service provided by the OS. The file

system management service of Kernel is responsible for

 The creation, deletion and alteration of files and directories

 Saving of files in the secondary storage memory

 Providing automatic allocation of file space based on the amount of free space available

 Providing flexible naming convention for the files

I/O System (Device) Management

Kernel is responsible for routing the I/O requests coming from different user applications to the

appropriate I/O devices of the system. In a well-structured OS, the direct assessing of I/O devices are

not allowed and the access to them are provided through a set of Application Programming

Interfaces (APIs) exposed by the kernel. The kernel maintains a list of all I/O devices of the system.

The list may be available in advance and recent kernel dynamically updates the list of available

devices. The service ‘Device Manager’ of the kernel is responsible for handling all I/O device related

operations. The kernel talks to the I/O device through a set of low level system calls, which are

implemented in a service, called device drivers. The device manager is responsible for

 Loading and unloading of device drivers

Chapter 6 – Real Time Operating System

5

 Exchanging information and the system specific control signals to and from the device

Secondary Storage Management

The secondary storage management deals with managing the secondary storage memory devices

that are connected to the system. Secondary memory is used as backup medium for programs and

data since the main memory is volatile. In most systems, the secondary storage is kept in disks (Hard

Disk). The secondary storage management service of kernel deals with

 Disk storage allocation

 Disk scheduling (time interval at which the disk is activated to backup data)

 Free Disk space management

Protection Systems

Modern operating systems are designed in such a way to support multiple users with different levels

of access permissions (For example: Administrator, Standard, Restricted, Guest, etc). Implementing

security policies to restrict the access to both user and system resources by different applications or

processes or users, one user may not be allowed to view or modify the whole/portions of another

user’s data or profile details. Some application may not be granted with permission to make use of

some of the system resources.

Interrupt Handler

Kernel provides a mechanism to handle all external/internal interrupts generated by the system.

Based upon the priority of the interrupt the process either runs in the foreground or background.

Depending on the type of operating system, a kernel may contain lesser number of services of more

number of services which may include network communication, network management, user-

interface graphics, timer services (delays, timeouts, etc.), error handler, database management, etc.

B. Kernel Space and User Space

The program code corresponding to the kernel applications/services are kept in a contiguous area of

primary memory and are protected from un-authorized access by user programs/applications. The

memory space at which the kernel code is located is known as ‘Kernel Space’. Similarly, all user

applications are loaded to a specific area of primary memory and this memory area is referred as

‘User Space’. User space is the memory area where user applications are loaded and executed. The

partitioning of memory into kernel and user space is purely OS dependent.

Chapter 6 – Real Time Operating System

6

C. Types of Kernel

Based on the kernel architecture/design, kernels can be classified into Monolithic and Micro.

Monolithic Kernel

In Monolithic Kernel architecture, all kernel services run in the kernel space. Here all kernel modules

run within the same memory space under a single kernel thread. It runs all basic system services and

provides powerful abstraction of the underlying hardware. Amount of context switches and

messaging involved are greatly reduced which makes it run faster than microkernel. The major

drawback of monolithic kernel is that any error or failure in any one of the kernel modules leads to

the crashing of the entire kernel application. The inclusion of all basic services in kernel space leads

to different drawbacks such as requirement of large kernel size, lacking extensibility, poor

maintainability. LINUX, SOLARIS, MS-DOS kernels are examples of monolithic kernel.

Figure 6.2: The Monolithic Kernel Model

Microkernel

The microkernel design incorporates only the essential set of operating system services such as

communication and I/O control into the kernel. The rest of the operating system services are

implemented in programs known as ‘Servers’ which runs in user space. It is more stable than

monolithic as the kernel is unaffected even if the server fails. Memory Management, process

Management, timer systems and interrupt handlers are the essential services, which forms the part

of microkernel. Microkernel based design approach offers the following benefits.

 Robustness: If a problem is encountered in any of the service, which runs as ‘Server’

application, the same can be reconfigured and re-stated without the need for re-starting the

entire OS.

Applications

Monolithic kernel with all

operating system services running

in kernel space

Chapter 6 – Real Time Operating System

7

 Configurability: services can be changed, updated without corrupting the essential services

residing within the microkernel.

Figure 6.3: The Microkernel Model

6.2 Task Process and Threads

A task is defined as a program in execution and related information maintained by OS for that

program. Task is also known as ‘Job’ in the operating system context. A program or part of it in

execution is also called a ‘Process’. The terms ‘Task’, ‘Job’ and ‘Process’ refer to the same entity in

the operating system context and most often they are used interchangeably.

A. Process

A process is an instance of a program or part of program in execution. A process requires various

system resources such as the CPU for executing the process, memory for storing the code

corresponding to the process and associated variables, I/O devices for information exchange etc. A

program by itself is not a process; a program is a passive entity, such as a file containing a list of

instructions stored on the disk (executable file). A process is an active entity. A program becomes a

process when an executable file is loaded into memory.

Structure of a process

A process holds a set of registers, process status, a Program Counter (PC) to point to the next

executable instruction of the process, a stack for holding the local variables associated with the

Applications

Microkernel with essential services like

memory management, process

management, timer systems etc…

Servers (Kernel

services running in

user space)

Chapter 6 – Real Time Operating System

8

process and the code corresponding to the process. From a memory perspective, the memory

occupied by the process is separated into three regions, stack memory, data memory and code

memory.

The stack memory holds all temporary data such as variables local to the process. Data memory

holds all global data for the process. The code memory contains the program code (instructions)

corresponding to the process.

Figure 6.4: Structure of a Process

Process States and State Transition

The process traverses through a series of states during its transition from the newly created state to

the terminated state. The cycle through which a process changes its state from ‘newly created’ to

‘execution completed’ is known as ‘Process Life Cycle’.

 Created State: it is the state at which a process is being created. The operating system

recognizes a process in the created state but no resources are allocated to the process.

 Ready State: It is the state, where a process is loaded into the memory and awaiting the

processor time for execution. The process is placed in the ready list queue maintained by

the OS.

 Running State: It is the state where the source code instructions corresponding to the

process are being executed. The process execution happens in this state.

Code Memory corresponding

to the Process

Process

 Stack (Stack pointer)

Working registers

Status registers

Program counter (PC)

Chapter 6 – Real Time Operating System

9

 Blocked/Waiting State: it refers to a state at where a running process is temporarily

suspended from execution and does not have immediate access to resources. The blocked

state might be invoked by various conditions like: the process enters a wait state for an

event to occur or waiting for getting access to a shared resource.

 Terminated/Completed State: It is a state where the process completes its execution.

Different OS kernel can have different name for the state associated with a task. Created state may

be stated as dormant state, waiting state may be restated as Pending state and so on.

Figure 6.5: Process states and state transition representation

Process Control Block (PCB)

Each process is represented in the OS by a process control block. A PCB serves as a repository for

any information that may vary form process to process. A PCB contains many pieces of information

associated with a specific process.

 Process state: The state may be new, ready, running, waiting/blocked/pending or

completed.

 Program counter: It indicates the address of next instruction to be executed for current

process.

 CPU registers: They include accumulators index registers, stack pointers, general purpose

registers along with any status registers. The content of PC along with the state information

of a process must be saved when an interrupt occurs.

Waiting for I/O

Waiting for Shared Resources

I/O Completion

Shared Resources acquired

Execution

Completion

Scheduled for

Execution

Interrupted or

Preempted

Loaded into

Memory
 Created Ready

 Blocked

 Running Completed

Chapter 6 – Real Time Operating System

10

 CPU Scheduling Information: This information includes the process priority and the pointers

to the scheduling queues

 Memory management Information: This information includes the value of the base

registers, page tables depending upon the memory system used by the OS.

 Accounting information: This information includes the amount of CPU time, time limits and

process numbers.

 I/O status information: It includes the list of I/O devices allocated to a process.

B. Threads

A thread, basic unit of CPU utilization, is a single sequential flow of control within a process. A

process can have many threads of execution. Different threads which are part of process share the

data memory, code memory and the heap memory.

Figure 6.6: Single-Threaded Process Figure 6.7: Multi-Threaded Process

However, the threads maintain their own thread status (CPU register value), Program Counter (PC)

and stack. If a process has multiple threads of control, it can perform more than one task at a time.

It is called a multi threaded process. If a process has a single thread of control it can perform a single

task and is called single threaded process.

Concept of Multithreading

A process contain various sub-operations like getting input from I/O devices connected to the

processor, performing some internal calculations/operations, updating some I/O devices etc. If all

the sub-functions of a task are executed in sequence, the CPU utilization may not be efficient. For

example, if the process I waiting for a user input, the CPU enters the wait state for the event, and for

Code Memory

Data Memory

Stack

Registers

Thread

Code Memory

Data Memory

Stack

Registers

Thread2

Stack

Registers

Thread3

Stack

Registers

Thread1

Chapter 6 – Real Time Operating System

11

the process execution also enters a wait state. If a process is split into different threads carrying out

the different sub-functionalities of the process, the CPU can be effectively utilized and when the

thread corresponding to the I/O operation enters the wait state, another thread which do not

require the I/O event for their operation can be switched into execution. This leads to more speedy

execution of the process and the efficient utilization of the processor time and resources.

The benefits of multi-threaded can be broken down into the following major categories:

 Responsiveness: Multi-threading on interactive application may allow a program to

continue running even if part of it is blocked or is performing a lengthy operation, thereby

increasing responsiveness to the user.

 Economical: Process creation is costly in terms of allocating memory and resources. Multiple

thread creation within a process is economical because threads share the resources of the

process to which they belong (code, data, heap memory). Creation of threads and context-

switch of threads is economical.

 Utilization of multiprocessor architecture: The benefits of multithreading can be greatly

increased in a multi processor architecture, where threads may be running in parallel in

different processors. A single threaded process can only run on one processor, no matter

how many processors are available. Multi threading on a multiprocessor machine increases

concurrency.

 Efficient CPU utilization: CPU is engaged all the time. Since a process is split into different

threads, when a thread enters a wait/block state, the CPU can be utilized by other threads

of the process. This speeds up the execution of a process.

C. User level & Kernel level threads

User Level Threads

The user level threads don’t have kernel/OS support and they exists only in a running process. Even

if a process contains multiple user level threads, the OS treats it as a single thread. It is the

responsibility of the process to schedule each thread as and when ever required. User level threads

of a process are non-preemptive at the thread level from the OS perspective.

Kernel Level Threads

These are individual units of execution, which the OS treats as separate threads. The OS interrupts

the execution of the currently running kernel thread and switches the execution of another kernel

Chapter 6 – Real Time Operating System

12

thread based on the scheduling policies implemented by the OS. Kernel level threads are pre-

emptive.

Relationship between User level thread and Kernel level thread

There are many ways for binding/connecting user level threads with kernel level threads.

Many to One model: Many user level threads are mapped to a single kernel thread. The kernel

treats all user level threads as single thread and the execution switching among the user level

threads happens when a currently executing user level thread voluntarily blocks itself or

relinquishes the CPU.

One to One model: Each user level thread is bonded to a kernel/system level thread. It provides

more concurrency than the many to one model by allowing another thread to run when a thread

makes a blocking system call. It allows multiple threads to run in parallel on multiprocessor. Creating

a user level thread requires creating a corresponding kernel level thread.

Many to many model: It multiplexes many user level threads to a smaller or equal no of kernel level

threads. Developers can create as many user level threads as necessary and the corresponding

kernel level threads can run in parallel on a multiprocessor. When a thread performs a blocking

system call, the kernel can schedule another thread for execution.

D. Thread Libraries

A thread library provides the programmer with an API for creating and managing threads. There are

two primary ways of implementing thread library.

The first approach is to provide a library entirely by the user space with no kernel/OS support. All

code and data structure for library exists in user space. This means that invoking a function in the

library results in a local function call in user space and not a system call.

The second approach is to implement a kernel level library supported directly by the OS. In this case,

code and data structure for the library exists in the kernel space. Invoking a function in the API for

the library, results in a system call to the kernel.

There are three main thread libraries that are used today.

Chapter 6 – Real Time Operating System

13

 POSIX threads: POSIX stands for Portable OS Interface. The POSIX standard for defining API, for

thread creation and management, is pthreads. Pthreads library defines the set of POSIX thread

creation and management functions in C language. Pthread may be provided as either a user

level or a kernel level library.

Thread Call Description

pthread_create() Creates a new thread

pthread_exit() Terminates the calling thread

pthread_join() Blocks the current thread and waits until the completion of

the thread pointed by it.

pthread_yield() Releases the CPU to let another thread run

pthread_attr_init() Create and initialize a thread’s attributes

pthread_attr_destroy() Releases a thread’s attributes

 Win32 threads: Win32 threads are supported by various flavors of the windows OS. The win32

API libraries provide a standard set of win32 thread creation and management function. Win32

thread library is a kernel level library.

Thread Call Description

CreateThread() Creates a new thread

SuspendThread() Temporarily suspends thread execution

ResumeThread() Wakes up a suspended thread

ExitThread() It terminates a thread and allocates the thread stack resources

along with other resources that were held by it.

 Java threads: Java threads are the threads supported by Java programming language. The java

thread class ‘Thread’ is defined in the package ‘java.lang’. The java thread API allows thread

creation and management directly in the java programs. Since a java virtual machine runs on the

top of host operating system, the JAVA thread API on the top of a host OS, the JAVA thread API

typically implemented using a thread library available on the host system. This means that on

windows system, java threads are typically implemented using the win32 API. UNIX and LINUS

systems user pthreads.

Chapter 6 – Real Time Operating System

14

Thread Call Description

Start() Allocates memory and initializes a new thread in JAVA

Yield() A running thread enters the ready state

Sleep() A thread enters the suspend state

Wait() A thread enters a blocked state

Stop() Terminates a thread and de-allocates resources

E. Difference between Thread and Process

Thread Process

It is a single unit of execution and is a part of

the process

A process is a program in execution and

combines one or more threads

A thread shares the code, data, heap memory

with other threads of the same process

A process has its own code, data and stack

memory

A thread cannot live independently A process contains at least one thread

Threads are very inexpensive to create Processes are expensive to create. Involves

many OS overhead

Context switching is inexpensive and fast Context switching is complex and involves lot

of OS overhead and is comparatively slower.

If a thread expires, its stack is reclaimed by

the process.

If a process dies, the resources allocated to it

are reclaimed by the OS and all the associated

threads of the process also dies.

6.3 Multiprocessing and Multitasking

Multiprocessing describes the ability to execute multiple processes simultaneously. Systems which

are capable of performing multiprocessing are called multiprocessor system. Multiprocessor

systems possess multiple CPUs/processors and can execute multiple processes simultaneously. The

ability of an OS to have multiple programs in memory, which are ready for execution, is referred as

multiprogramming.

In a uniprocessor system, it is not possible to execute multiple processes simultaneously. However,

it is possible for a uniprocessor system to achieve some degree of pseudo parallelism in the

execution of multiple processes by switching the execution among different processes. The ability of

an operating system to hold multiple processes in memory and switch the processor from executing

Chapter 6 – Real Time Operating System

15

one process to another process is known as multitasking. Multitasking creates the illusion of

multiple tasks executing in parallel. Multitasking involves ‘Context switching’, ‘Context saving’ and

‘Content retrieval’.

A. Context Switching

Each task may exist in any one of the different states (running, ready, blocked, etc). During the

execution of an application program, individual tasks are continuously changing from one state to

another. At any point of the execution, only one task is in running mode. During the process of state

change, CPU control changes from one task to another, context of the to-be-suspended task will be

saved while context of the to-be-executed task will be retrieved.

The process of saving the context of a task being suspended and restoring the context of a task

being resumed is called context switching.

Figure 6.8: Simple Context Switching Diagram

Context Saving is the act of saving the current contents which contains the context details (register

details, memory details, system resource usage details, etc for the currently running process at the

time of CPU switching. Context retrieval is the process of retrieving the saved context details for a

process which is going to be executed due to CPU switching. Context switch time is pure overhead

because the system does no useful work while switching.

B. Types of Multitasking

Multitasking involves the switching of execution among multiple tasks. Depending on how the

switching act is implemented, multitasking can be classified into different types.

Save state into TCBA

Reload state from TCBB

Save state into TCBB

Reload state from TCBB

Task A Task B

Executing Idle

Executing

Executing

Idle

Idle

Chapter 6 – Real Time Operating System

16

Co-operative Multitasking: It is the most primitive form of multitasking in which a task/process gets

a chance to execute only when the currently executing task/process voluntarily relinquishes the

CPU. Any task/process can hold the CPU as much time as it wants. If the currently executing task is

non-cooperative, the other tasks may have to wait for a long time to get the CPU.

Preemptive Multitasking: It ensures that every task/process gets a chance to execute. When and

how much time a process gets is dependent on the implementation of the preemptive scheduling.

The currently running task/process is preempted to give a chance to other tasks/process to execute.

The preemption of task may be based on time slots or task/process priority.

Non-preemptive Multitasking: In non-preemptive multitasking, the process/task, which is currently

given the CPU time, is allowed to execute until it terminates or enters the ‘Blocked/Wait’ state,

waiting for an I/O or system resource. In co-operative multitasking, the currently executing

process/task need not relinquish the CPU when it enters the ‘Blocked/Wait’ state, whereas in non-

preemptive multitasking the currently executing task relinquishes the CPU when it waits for an I/O

or system resource or an event to occur.

6.4 Task Scheduling

Multitasking involves the execution switching among the different tasks. Determining which

task/process is to be executed at a given point of time is known as task/process scheduling.

Scheduling policies forms the guidelines for determining which task is to be executed when. The

scheduling policies are implemented in an algorithm and it is run by the kernel as a service. The

process scheduling decision may take place when a process switches its state to

 Ready state form Running state

 Blocked/Wait state from Running state

 Ready state from Blocked/Wait state

 Completed state

The selection of a scheduling criterion should consider the following factors

 CPU utilization: the scheduling criterion should always make the CPU utilization high. CPU

utilization is a direct measure of how much percentage of the CPU is being utilized.

 Throughput: This gives an indication of the number of processes executed per unit of time.

The throughput for a good scheduler should always be higher.

Chapter 6 – Real Time Operating System

17

 Turnaround time: It is the amount of time taken by a process for completing its execution. It

includes the time spent by the process for waiting for the main memory, time spend in the

ready queue, time spent on completing the I/O operations, and the time spend in execution.

The turnaround time should be a minimal for a good scheduling algorithm.

 Waiting Time: It is the amount of time spent by a process in the ‘Ready’ queue waiting to

get the CPU time for execution. The waiting time should be minimal for a good scheduling

algorithm.

 Response time: It is the time elapsed between the submission of a process and the first

response, for a good scheduling algorithm, the response time should be as least as possible.

The operating system maintains various queues in connection with the CPU scheduling, and a

process passes through these queues during the course of its admittance to execution completion.

The various queues maintained by OS in association with CPU scheduling are:

 Job Queue: Job queue contains all the processes of the system.

 Ready Queue: contains all the processes, which are ready for execution and waiting for CPU

to get their turn for execution

 Device Queue: contains the set of processes, which are waiting for an I/O device.

The scheduling algorithm can be classified as:

A. Non-preemptive Scheduling

It is employed in systems which implements non-preemptive multitasking model. In this scheduling

type, the currently executing task/process is allowed to run until it terminates or enters the wait

state waiting for an I/O or system resources. Various types of non-preemptive scheduling are listed

below.

 First Come First Served (FCFS) / FIFO Scheduling: The FCFS scheduling algorithm allocates

CPU time to the processes based on the order in which they enter the ready queue. The first

entered process is serviced first. E.g. ticketing reservation system where people need to

stand to a queue and the first person standing in the queue is serviced first.

 Last Come First Served (LCFS) / LIFO scheduling: The LCFS scheduling algorithm also

allocates CPU time to the Processes based on the order in which they are entered in the

ready queue. The last entered process is services first.

 Shortest Job First (SJF) scheduling: SJF scheduling algorithm sorts the ready queue each

time a process relinquishes the CPU to pick the process with shortest estimated completion

Chapter 6 – Real Time Operating System

18

time. The process with the shortest estimated run time is scheduled first, followed by the

nest shortest process, and so on.

 Priority Based Scheduling: This scheduling algorithm ensures that a process with high

priority is serviced at the earliest compared to other low priority processes in the ready

queue. The SJF algorithm can be viewed as a priority based scheduling where each task is

prioritized in the order of the time required to complete the task. Another way of priority

assigning is associating a priority to the task/process at the time of creation of the

task/process. The priority is the number ranging from 0 to the maximum priority supported

by the OS. For windows CE operating system a priority number 0 indicates the highest

priority.

B. Preemptive Scheduling

Preemptive scheduling is employed in systems, which implements preemptive multitasking model.

In this scheduling, every task in the ready queue gets a chance to execute. When and how often

each process gets a chance to execute is dependent on the type of preemptive scheduling

algorithm. In this scheduling method, the scheduler can preempt (stop temporarily) the currently

executing process and select another task from the ready queue for execution. The task which is

preempted by the scheduler is moved to the ready queue. The act of moving a running process into

a ready queue by the scheduler, without the processes requesting for it is known as preemption.

The different types of preemptive scheduling adopted in process scheduling are explained below.

 Preemptive SJF Scheduling / Shortest Remaining Time (SRT): The preemptive SJF

scheduling algorithm sorts the ready queue when a new process enters the ready queue and

checks whether the execution time of the new process is shorter than the remaining of the

total estimated time for the currently executing process. If the execution time of the new

process is less, the currently executing process is preempted and the new process is

scheduled for execution. Preemptive SJF scheduling is also known as Shortest Remaining

Time (SRT) scheduling.

 Round Robin Scheduling: In this scheduling method, each process in the ready queue is

executed for a pre-defined time slot. The execution starts with picking up the first process in

the ready queue. It is executed for a pre defined time slice and when the pre-defined time

elapses or the process completes before the pre-defined time slice, the next process in the

ready queue is selected for execution. Once each process in the ready queue is executed for

Chapter 6 – Real Time Operating System

19

the pre-defined time period, the scheduler picks the first process in the ready queue again

for execution and the sequence is repeated. So, the round robin scheduling is similar to the

FCFS scheduling but time slice preemption is added to switch the execution between the

processes in the ready queue.

 Priority Based Scheduling: Priority based preemptive scheduling algorithm is same as that of

the non-preemptive priority based scheduling except for the switching of execution

between processes. In preemptive scheduling, any high priority process entering the ready

queue is immediately scheduled for execution whereas in the non-preemptive scheduling

any high priority process entering the ready queue is scheduled only after the currently

executing process completes its execution or only when it voluntarily relinquishes the CPU.

6.5 Task Synchronization

In a multitasking environment, multiple processes run concurrently and share the system resources.

When two processes try to access display hardware connected to the system or two processes try to

access a shared memory area where one process tries to write to a memory location while the other

process is trying to read from this. Then, an issue will arise and hence each process must be made

aware of the access of the shared resources. The act of making processes aware of the access of the

shared resources by each process to avoid conflicts is known as task/process synchronization.

Various synchronization issues may arise if processes are not synchronized properly.

Task Communication/Synchronization Issues

A. Racing

Racing or Race condition is the situation in which multiple processes compete each other to access

and manipulate shared data concurrently. In a race condition the final value of the shared data

depends on the process which acted on the data finally.

Suppose that two processes A and B have access to a shared variable Count:

Process A: Count = Count + 5

Process B: Count = Count + 10

Assume that process A and process B are executing concurrently in a time-shared, multi-

programmed system.

Each statement requires several machine level instructions such as

For Count = Count + 5

A1: Load Ra, Count

Chapter 6 – Real Time Operating System

20

A2: Add Ra, 05

A3: Store Count, Ra

For Count = Count + 10

B1: Load Rb, Count

B2: Add Rb, 10

B3: Store Count, Rb

In a time-shared or multi-processing system the exact instruction execution order cannot be

predicted.

B. Deadlock

A race condition produces incorrect results whereas a deadlock condition creates a situation where

none of the processes are able to make any progress in their execution, resulting in a set of

deadlocked processes. In its simplest form, ‘deadlock’ is the condition in which a process is waiting

for a resource held by another process which is waiting for a resource held by the first process. For

instance, process A holds a resource x and it wants a resource y held by process B. Process B is

currently holding resource y and it wants the resources x which is currently held by process A. None

of the competing process will be able to access the resources held by other processes since they are

locked by the respective processes.

Scenario 1 Scenario 2

A1: Load Ra, Count

A2: Add Ra, 05

A3: Store Count, Ra

Context Switch

B1: Load Rb, Count

B2: Add Rb, 10

B3: Store Count, Rb

A1: Load Ra, Count

A2: Add Ra, 05

Context Switch

B1: Load Rb, Count

B2: Add Rb, 10

B3: Store Count, Rb

Context Switch

A3: Store Count, Ra

Count is increased by 15 Count is increased by 5

Chapter 6 – Real Time Operating System

21

Figure 6.9: Scenarios leading to Deadlock

Coffman conditions: The different conditions favoring a deadlock situation are listed below

 Mutual Exclusion: The criteria that only one process can hold a resource at a time.

Processes should access shared resources with mutual exclusion.

 Hold and Wait: The condition in which a process holds a shared resource by acquiring the

lock controlling the shared access and waiting for additional resources held by other

processes.

 No Resource Preemptive: The criteria that operating system cannot take back a resource

from a process which is currently holding it and the resource can only be released

voluntarily by the process holding it.

 Circular Wait: A process is waiting for a resource which is currently held by another process

which in turn is waiting for a resource held by the first process. In general, there exists a set

of waiting process P0, P1 … Pn with P0 is waiting for a resource held by P1 and P1 is waiting

for a resource held by P0, …, Pn is waiting for a resource held by P0 and P0 is waiting for a

resource held by Pn and so on… This forms a circular wait queue.

Deadlock Handling

A smart OS may foresee the deadlock condition and will act proactively to avoid such a situation.

The OS may adopt any of the following techniques to detect and prevent deadlock conditions.

 Ignore Deadlocks: Always assume that the system design is deadlock free. This is acceptable

for the reason the cost of removing a deadlock is large compared to the chance of deadlock

to occur.

 Detect and Recover: This approach suggests the detection of a deadlock situation and

recovery from it. OS keeps a resource graph in their memory. The resource graph is updated

on each resource request and release. A deadlock condition can be detected by analyzing

the resource graph by graph analyzer algorithms. Once a deadlock condition is detected, the

system can terminate a process or preempt the resource to break the deadlocking cycle.

Process A Process B

Resource ‘x’

Resource ‘y’

Holds

Waits

Waits

Holds

Chapter 6 – Real Time Operating System

22

 Avoid Deadlocks: Deadlock is avoided by the careful resource allocation techniques by the

operating system.

 Prevent Deadlocks: Prevent the deadlock condition by negating one of the four conditions

favoring the deadlock situation.

o Ensure that a process does not hold any other resources when it requires a

resource.

o Ensure resources preemption.

C. Livelock

In a livelock condition, a process changes its state with time but is unable to make any progress in

the execution completion. While in deadlock a process enters a wait state for a response and

continues in that state forever without making any progress in the execution. For example, two

people attempting to cross each other in a narrow corridor. Both the person moves towards each

side of the corridor to allow the opposite person to cross. Since the corridor is narrow, none of them

are able to cross each other. Here both of the persons perform some action but still they are unable

to achieve their target.

D. Starvation

In the multitasking context, starvation is the condition in which a process does not get the resources

required to continue its execution for a long time. As time progresses the process starves on

resource. Starvation may arise due to various conditions like byproduct of preventive measures of

deadlock, scheduling policies favoring high priority tasks and tasks with shortest execution time, etc.

Task Synchronization techniques

Task synchronization is essential for:

 Avoiding conflicts in resource access in a multitasking environment.

 Ensuring proper sequence of operation across processes.

 Communicating between processes.

The code memory area which holds the program instructions for accessing a shared resource,

shared variables is known as critical section. In order to synchronize the access to shared resources,

the access to the critical section should be exclusive.

Chapter 6 – Real Time Operating System

23

Consider two processes Process A and Process B running on a multitasking system. Process A is

currently running and it enters its critical section. Before Process A completes its operation in the

critical section, the scheduler preempts process A and schedules Process B for execution. Process B

also contains the access to the critical section which is already in use by Process A. if process B

continues its execution and enters the critical section which is already in use by Process A, a racing

condition will be resulted. A mutual exclusion policy enforces mutually exclusive access of critical

sections.

A. Mutual Exclusion through Busy Waiting/Spin Lock

The Busy Waiting technique uses a lock variable for implementing mutual exclusion. Each process/

thread checks this lock variable before entering the critical section. The lock is set to 1 by a

process/thread if the process/thread is already in its critical section; otherwise the lock is set to 0.

The major challenge in implementing the lock variable based synchronization is the non-availability

of a single atomic instruction which combines the reading, comparing and setting of the lock

variable. Most often the three different operations related to the locks, the operation of reading the

lock variable, checking its present value and setting it are achieved with multiple low level

instructions. The low level implementations of these operations are dependent on the underlying

processor instruction set and the compiler in user.

Consider a situation where process 1 read the lock variable and tested it and found that the lock is

available and it is about to set the lock for acquiring the critical section. But just before process 1

sets the lock variable, process 2 preempts process 1 and starts executing. Process 2 contains a

critical section code and it tests the lock variable for its availability. Since process 1 was unable to set

the lock variable, its state is still 0 and process 2 sets it and acquires the critical section. Remember,

process 1 was preempted at a point just before setting the lock variable. Now process 1 sets the lock

variable and enters the critical section. It violates the mutual exclusion policy and may produce

unpredicted results.

The above issue can be effectively tackled by combining the actions of reading the lock variable,

testing its state and setting the lock into a single step. This can be achieved with the combined

hardware and software support. Most of the processors support a single instruction Test and Set

Lock (TSL) for testing and setting the lock variable. The TSL instruction call copies the value of the

lock variable and sets it to a nonzero value.

Chapter 6 – Real Time Operating System

24

The lock based mutual exclusion implementation always checks the state of a lock and waits till the

lock is available. This keeps the processes always busy and forces the processes to wait for the

availability of the lock for proceeding further. Hence this synchronization mechanism is known as

Busy Waiting. This method is useful in handling scenarios where the processes are likely to be

blocked for a shorter period of time on waiting the lock, as they avoid OS overheads on context

saving and process re-scheduling. The drawback of Spin Lock based synchronization is that if the lock

is being held for a long time by a process and if it is preempted by the OS, the other threads waiting

for this lock may have to spin a longer time for getting it. The busy waiting mechanism keeps the

process always active, performing a task which is not useful and leads to the wastage of processor

time and high power consumption.

B. Mutual Exclusion through Sleep & Wakeup

The Busy waiting mutual exclusion enforcement mechanism used by processes makes the CPU

always busy by checking the lock to see whether they can proceed. This results in the wastage of

CPU time and leads to high power consumption. This is not affordable in embedded systems

powered on battery. In sleep and wakeup mechanism, when a process is not allowed to access the

critical section, which is currently being locked by another process, the process undergoes Sleep and

enters the blocked state. The process which is blocked on waiting for access to the critical section is

awakened by the process which currently owns the critical section. The process which owns the

critical section sends a wakeup message to the process, which is sleeping as a result of waiting for

the access to the critical section, when the process leaves the critical section. The sleep and wakeup

policy for mutual exclusion can be implemented in different ways.

 Semaphore: It is a sleep and wakeup based mutual exclusion implementation for share

resource access. Semaphore is a system resource and the process which wants to access the

share resource can first acquire this system object to indicate the other processes which

wants the shared resource that the shared resource is currently acquired by it. The

resources which are shared among a process can be either for exclusive use by a process or

for using by a number of processes in a time. The display device of an embedded system is a

typical example for the shared resource which needs exclusive access by a process. The hard

disk of a system is a typical example for sharing the resource among a limited number of

multiple processes.

Chapter 6 – Real Time Operating System

25

Binary Semaphore (Mutex): The binary semaphore provides exclusive access to shared

resource by allocating the resource to a single process at a time and not allowing the other

processes to access it when it is being owned by a process. Mutex is a synchronization

object provided by OS for process synchronization. Any process can create a mutex object

and other processes of the system can use this mutex object at a time. The state of a mutex

object is set to signaled when it is not owned by any process, and set to non-signaled when

it is owned by any process.

Counting Semaphore: The counting semaphore limit the access of resources to fixed

number of processes or threads. It maintains a count between zero and a value. It limits the

usage of the resource to the maximum value of the count supported by it. The state of the

counting semaphore object is set to signaled when the count of the object is greater than

zero. The count associated with a semaphore object is decremented by one when a process

acquires it and the count is incremented by one when a process releases the semaphore

object. The state of the semaphore object is set to non-signaled when the semaphore is

acquired by the maximum number of processes that the semaphore can support.

 Events: Event object is a synchronization technique which uses the notification mechanism

for synchronization. In concurrent execution we may come across situations which demand

the processes to wait for a particular sequence for its operations. A thread/process can wait

for an event and another thread/process can set this even for processing by the waiting

thread/process. The creating and handling event objects for notification is OS kernel

dependent.

Priority Inversion

Priority inversion is the byproduct of the combination of blocking based process synchronization and

pre-emptive priority scheduling. It is the condition in which a high priority task needs to wait for a

low priority task to release a resource which is shared between the high priority task and the low

priority task, and a medium priority task which doesn’t require the shared resource continue its

execution by preempting the low priority task. Priority based preemptive scheduling technique

ensures that a high priority task is always executed first, where as the lock based process

synchronization mechanism ensures that a process will not access a shared resource, which is

currently in use by another process. The synchronization technique is only interested in avoiding

Chapter 6 – Real Time Operating System

26

conflicts that may arise due to concurrent access of the shared resources and not at all bother about

the priority of the process which tries to access the shared resource.

Consider a three process A, B, C with priorities High, Medium and Low respectively. Process A and C

share a variable X and the access to this variable is synchronized through mutual exclusion. Process

C is ready and is picked up for execution by the scheduler and process C tries to access the shared

variable X and acquires the semaphore to indicate the other processes that it is accessing the shared

variable X. At the same time, process B enters the ready state with higher priority compared to C, so

Process C gets preempted and B starts executing. Now if Process A enters the ready state at this

point. Process B is preempted and process A is scheduled for execution. Process A involves access of

shared variable X which is currently being accessed by process C. So process A is put into blocked

state and process B gets the CPU and it continues its execution until it relinquishes the CPU

voluntarily or enters a wait state or preempted by another high priority task. The high priority A has

to wait till Process C gets a chance to execute and release the semaphore. This produces unwanted

delay in the execution of the high priority task which is supposed to be executed immediately when

it was ready.

The commonly adopted priority inversion workarounds are:

A. Priority Inheritance

A low priority task that is currently accessing a shared resource requested by a high priority task

temporarily inherits the priority of that high priority task, from the moment the high priority task

raises the request. Boosting the priority of the low priority task to that of the priority of the task

which requested the shared resource holding by the low priority task eliminates the preemption of

the low priority task by other tasks whose priority are below that of the task requested the shared

resource and thereby reduces the delay in waiting to get the resource requested by the high priority

task. The priority of the low priority task which is temporarily boosted to high is brought to the

original value when it releases the shared resources. Priority inheritance handles priority inversion

at the cost of run time overhead at scheduler. It imposes the overhead of checking the priorities of

all tasks which tries to access shared resources and adjust the priority dynamically.

B. Priority Ceiling

In Priority Ceiling, a priority is associated with each shared resource. The priority associated to each

resource is the priority of the highest priority task which uses this shared resource. This priority level

Chapter 6 – Real Time Operating System

27

is called ceiling priority. Whenever a task accesses a shared resource, the scheduler elevates the

priority of the task to that of the ceiling priority of the resource. If the task which accesses the

shared resource is a low priority task, its priority is temporarily boosted to the priority of the highest

priority task to which the resource is also shared. This eliminates the preemption of the task by

other medium priority tasks leading to priority inversion. The priority of the task is brought back to

the original level once the task completes the accessing of the shared resource. Priority Ceiling

brings the added advantage of sharing resources without the need for synchronization techniques

like locks. The priority of the task accessing shared resources is boosted to the highest priority of the

task among which the resource is shared; the concurrent access of shared resource is automatically

handled. Another advantage is that all the overheads are at compile time instead of run-time.

PRIORITY

LIST

A: HIGH

B: MEDIUM

C: LOW

Process

C

acquires

shared

variables

‘X’

Process B

preempts

C

Process A

preempts

B

Process A

requires

shared

variable

‘X’,

Priority of

C is

increased

to High

Process C

releases the

shared

resource, so

A starts

executing

with that

resource and

the priority

of C is

lowered to

its original

value.

Process A

completes

its

execution.

B starts

executing

Process B

completes

its

execution

and C

starts its

execution.

Process A Running Waiting Running

Process B Running Waiting Running

Process C Running Waiting Running Waiting Running

Figure 6.10: Illustration of Priority Inheritance

6.6 Device Drivers

It is a piece of software that acts as a bridge between the OS and the hardware. The architecture of

OS kernel will now allow direct device access from the user application. All devices related access

should flow through OS kernel, and the OS kernel routes it to the concerned hardware peripherals.

Device drivers are responsible for initiating and managing the communication with hardware

Chapter 6 – Real Time Operating System

28

peripherals. They are responsible for establishing connectivity, initializing hardware (setting up

various CPU registers) and transferring data.

Device drives which are part of OS are called built in drivers or on-board drivers. These drivers are

loaded by OS at the time of booting the device and are kept in RAM. Device drivers which need to be

installed for accessing a device are called installable drivers. Whenever the device is connected, the

OS loads the corresponding driver into memory. Driver files are usually in the form of ‘.dll’ files.

Drivers can run either in user space or in kernel space. Device drivers which run in user space are

called user mode driver and the driver which run in kernel space are called kernel mode drivers.

A device driver implements the following:

Device initialization and interrupt configuration: The driver configures the different registers of the

device. The interrupt configuration part deals with configuring the interrupts that needs to be

associated with the hardware. The basic interrupt configuration involves:

 Set the interrupt type (Edge triggered or Level triggered), enable the interrupts and set the

interrupt priorities.

 Bind the interrupt with an interrupt request (IRQ). The processor identifies an interrupt

through IRQ. These IRQs are generated by the Interrupt Controller. In order to identify and

interrupt the interrupt needs to be bonded to an IRQ.

 Register an Interrupt Service Routine (ISR) with an IRQ. ISR is the handler for an interrupt. In

order to service an interrupt, an ISR should be associated with an IRQ.

Interrupt handling and processing: An interrupt is served based on its priority, and the

corresponding ISR is invoked. The processing part of an interrupt is handled in an ISR. The whole

interrupt processing can be done by the ISR itself or by invoking an Interrupt Service Thread (IST).

The IST performs interrupt processing on behalf of the ISR. Since interrupt processing happens at

kernel level, user application may not have direct access to the drivers to pass and receive data.

Client Interfacing: The client interfacing implementation makes use of the Inter Process

Communication mechanisms supported by the embedded OS for communicating and synchronizing

with user applications and drivers. For example, to inform a user application that an interrupt is

occurred and the data received from the device is placed in a shared buffer, the client interfacing

code can signal an event.

Chapter 6 – Real Time Operating System

29

NUMERICAL EXAMPLES

Example 1: Three processes with process IDs P1, P2, P3 with priorities 2, 3, 0 and estimated

completion time 10, 5, 7 milliseconds respectively enter the ready queue together in the order P1,

P2, P3. Calculate the Waiting Time and Turn Around Time for each process and also the Average

Waiting Time and Average Turn Around Time. Assume there is no I/O waiting for the process. Use

the following non-preemptive scheduling algorithms.

 First Come First Serve Scheduling

 Priority Based Scheduling

 Shortest Job First Scheduling

Solution:

 Given information from the question are tabulated as shown below:

A. First Come First Served Scheduling

Process Entry

Time

Completion

Time

Priority Entered

P1 0 10 2 1st

P2 0 5 3 2nd

P3 0 7 0 3rd

P1 P2 P3

0 10 15 22

Execution Sequence of Processes

Waiting Time calculation

P1 = (0-0) = 0ms

P2 = (10-0) = 10ms

P3 = (15-0) = 15ms

Average Waiting Time

= (0+10+15)/3

 = 8.33ms

Turn Around Time calculation

P1 = (10-0) = 10ms

P2 = (15-0) = 15ms

P3 = (22-0) = 22ms

Average Turn Around Time

= (10 + 15 + 22)/3

 = 15.67ms

Waiting Time = Execution Start Point – Entry Point

Turn Around Time = Completion Point – Entry Point

Chapter 6 – Real Time Operating System

30

B. Priority Based Scheduling

C. Shortest Job First

P3 P1 P2

0 7 17 22

Execution Sequence of Processes

Waiting Time calculation

P3 = (0 - 0) = 0ms

P1 = (7 - 0) = 7ms

P2 = (17 - 0) = 17ms

Average Waiting Time

= (0 + 7 + 17)/3

 = 8ms

Turn Around Time calculation

P3 = (7 - 0) = 7ms

P1 = (17 - 0) = 17ms

P2 = (22 - 0) = 22ms

Average Turn Around Time

= (7 + 17 + 22)/3

 = 15.33ms

Waiting Time = Execution Start Point – Entry Point

Turn Around Time = Completion Point – Entry Point

P2 P3 P1

0 5 12 22

Execution Sequence of Processes

Waiting Time calculation

P2 = (0 - 0) = 0ms

P3 = (5 - 0) = 5ms

P1 = (12 - 0) = 12ms

Average Waiting Time

= (0 + 5 + 12)/3

 = 5.67ms

Turn Around Time calculation

P2 = (5 - 0) = 5ms

P3 = (12 - 0) = 12ms

P1 = (22 - 0) = 22ms

Average Turn Around Time

= (5 + 12 + 22)/3

 = 13ms

Waiting Time = Execution Start Point – Entry Point

Turn Around Time = Completion Point – Entry Point

Chapter 6 – Real Time Operating System

31

Example 2: Three processes with process IDs P1, P2, P3 with priorities 0, 1, 3 and estimated

completion time 6, 9, 3 milliseconds respectively enter the ready queue together. If a new process

P4 (priority 2) with estimated completion time 2ms enters the ready queue after 3ms of execution

of P1. Calculate the Waiting Time and Turn around Time for each process and also the Average

Waiting Time and Average Turn Around Time. Make use of following non-preemptive scheduling

algorithm to solve the problem.

 Shortest Job First (SJF) Scheduling

 Priority Based Scheduling

Solution:

A. Non - Preemptive SJF Scheduling

 Given information from the question are tabulated as shown below

Waiting Time = (Execution Starting Point – Entry Point)

Turn Around Time = (Completion Point – Entry Point)

Process Entry Time Completion Time Priority

P1 0 6 0

P2 0 9 1

P3 0 3 3

P4 3ms after P1 starts 2 2

P3 P1 P4 P2

 0 3 6 9 11 20

Execution Sequence of Processes

Waiting Time calculation

P3 = (0 - 0) = 0ms

P1 = (3 - 0) = 3ms

P4 = (9 - 6) = 3ms

P2 = (11 - 0) = 11ms

Average Waiting Time

= (0 + 3 + 3 + 11)/4

 = 4.25ms

Turn Around Time calculation

P3 = (3 - 0) = 3ms

P1 = (9 - 0) = 9ms

P4 = (11 - 6) = 5ms

P2 = (20 - 0) = 20ms

Average Turn Around Time

= (3 + 9 + 5+ 20)/4

 = 9.25ms

Chapter 6 – Real Time Operating System

32

Explanation: Entry point for three processes P1, P2 and P3 is same at 0ms but the process P4 enters

only after 3ms of execution of P1. So, the entry point for P4 will be at 6ms. Regardless of the

shortest completion time of P4, P4 will not halt the execution of P1 as the algorithm is non pre-

emptive. However, after the execution of P1, there remain two processes P2 and P4 with

completion time 9ms and 2ms respectively. Hence, P4 will start to execute after completion of P1

according to shortest job first scheduling.

B. Non - Preemptive Priority Based Scheduling

 Given information from the question are tabulated as shown below

Process Entry Time Completion Time Priority

P1 0 6 0

P2 0 9 1

P3 0 3 3

P4 3ms after P1 starts 2 2

P1 P2 P4 P3

 0 3 6 15 17 20

Execution Sequence of Processes

Waiting Time calculation

P1 = (0 - 0) = 0ms

P2 = (6 - 0) = 6ms

P4 = (15 - 3) = 12ms

P3 = (17 - 0) = 17ms

Average Waiting Time

= (0 + 6 + 12 + 17)/4

 = 8.75ms

Turn Around Time calculation

P1 = (6 - 0) = 6ms

P2 = (15 - 0) = 15ms

P4 = (17 - 3) = 14ms

P3 = (20 - 0) = 20ms

Average Turn Around Time

= (6 + 15 + 14 + 20)/4

 = 13.75ms

Waiting Time = (Execution Starting Point – Entry Point)

Turn Around Time = (Completion Point – Entry Point)

Chapter 6 – Real Time Operating System

33

Example 3: Three processes P1, P2, P3 with estimated completion time 9, 4, 6 ms and priorities 1, 3,

2 respectively enters the ready queue together. A new process P4 with estimated completion time

4ms and priority 0 enters the ready queue after 2 ms of start of execution of P1. Calculate the

Waiting Time and Turn Around Time for each process. Also Calculate the Average Waiting Time and

Average Turn Around Time, using the Preemptive Shortest Job First Scheduling and Priority Based

Scheduling.

Solution:

A. Preemptive SJF Scheduling

 Given information from the question are tabulated as shown below

P2 P3 P1 P4 P1

 0 4 10 12 16 23

Execution Sequence of Processes

Waiting Time calculation

P2 = (0 - 0) = 0ms

P3 = (4 - 0) = 4ms

P4 = (12 - 12) = 0ms

P1 = (10 - 0) + (16 - 12) = 14ms

Average Waiting Time

= (0 + 4 + 0 + 14)/4

 = 4.5ms

Turn Around Time calculation

P2 = (4 - 0) = 4ms

P3 = (10 - 0) = 10ms

P4 = (16 - 12) = 4ms

P1 = (23 - 0) = 23ms

Average Turn Around Time

= (4 + 10 + 4+ 23)/4

 = 10.25ms

Waiting Time = (Execution Starting Point – Entry Point) + Halted time

Turn Around Time = (Completion Point – Entry Point)

Process Entry Time Completion Time Priority

P1 0 9 1

P2 0 4 3

P3 0 6 2

P4 2ms after P1 starts 4 0

Chapter 6 – Real Time Operating System

34

Explanation: Entry point for three processes P1, P2 and P3 is same at 0ms but the process P4 enters

only after 2ms of execution of P1. So, the entry point for P4 will be at 12ms. At 12ms, there are two

processes remaining; P1 with 7ms left to execute and P4 with 4ms. Since P4 is shorter compared to

remaining part of P1, P4 will halt the execution of P1 at 12ms and starts its own execution. After P4

completes its execution at 16ms, P1 resumes.

B. Preemptive Priority based scheduling

Given information from the question are tabulated as shown below

Process Entry Time Completion Time Priority

P1 0 9 1

P2 0 4 3

P3 0 6 2

P4 2ms after P1

starts

4 0

P1 P4 P1 P3 P2

 0 2 6 13 19 23

Execution Sequence of Processes

Waiting Time calculation

P1 = (0 - 0) + (6 - 2) = 4ms

P4 = (2 - 2) = 0ms

P3 = (13 - 0) = 13ms

P2 = (19 - 0) = 19ms

Average Waiting Time

= (4 + 0 + 13 + 19)/4

 = 9ms

Turn Around Time calculation

P1 = (13 - 0) = 13ms

P4 = (6 - 2) = 4ms

P3 = (19 - 0) = 19ms

P2 = (23 - 0) = 23ms

Average Turn Around Time

= (13 + 4 + 19 + 23)/4

 = 14.75ms

Waiting Time = (Execution Starting Point – Entry Point) + Halted time

Turn Around Time = (Completion Point – Entry Point)

Chapter 6 – Real Time Operating System

35

Points to Remember

 When a process entering at the middle of execution does not halt the executing process,

then its entry point and start of execution will never be at same point. Hence, its WT is

never 0 and TAT is always greater than Completion Time.

 When a process entering at the middle of execution halts the executing process, then its

entry point and start of execution will be same. Hence, it’s WT = 0 and TAT = Completion

Time.

Chapter 7 – Control Systems

1

 Introduction

 Open-Loop and Closed-Loop Control Systems Overview

 General Control Systems and PID Controllers

 Software Coding of PID Controller

 PID Tuning

 Practical Issues Related to Computer-Based Control

 Benefits of Computer-Based Control Implementation

Chapter 7 – Control Systems

2

7.1 Introduction

Control systems, a class of embedded systems, focus on tracking the reference input that is

provided to the system. Initially the reference input is set and the output is more likely to track

the same input regardless of the different external factors involved. The tracking can get difficult

with the presence of disturbances. However, the system must be able to adjust to external factors

for optimum performance. The objective of a control system is to track the reference output. The

following figures represent good tracking and bad tracking respectively.

Figure 7.1: Good Tracking and Bad Tracking

7.2 Open-Loop and Closed-Loop Control Systems Overview

Open-Loop Control Systems are those systems in which the output has no influence on the

control action of the input signal. It is also referred as feed-forward system or non-feedback

system since the output is not fed back for comparison with the reference input. Also the

controller is not aware about the tracking of reference input, so optimization is not possible.

These systems are best utilized in case of predictable systems whose model is accurate and

disturbance effect is minimal. In general, the open-loop control systems consist of following:

 Plant, which is also referred as a process, is the physical system to be controlled.

Automobiles, fan, heater, disk etc are few examples.

 Output is the aspect or attribute of the physical system that we are about to control.

Speed, temperature can be taken as examples.

 Reference input is the desired value that is required to be observed as an output of the

physical system. Desired speed, temperature set by the user represents a reference input.

 Actuator is the device that is used to control the input to the plant. Motor can be taken as

an example of an actuator.

Chapter 7 – Control Systems

3

 Controller is the main processing part of the system which computes the input to the

plant such that desired output is achieved based on given reference input.

 Disturbance is an undesirable input to the system that may cause the output to deviate

from the desired reference input.

The general block diagram of Open-Loop Control Systems is shown in the figure below.

Figure 7.2: Block Diagram of Open-Loop Control System

Closed-Loop Control Systems are the systems operating on feedback principle. In such system the

output is fed back, compared with the reference input and error signal is produced. The controller

processes the error signal and reduces the error to obtain the desired output. Since the controller

is aware about the output variations, optimization can be done and optimum performance can be

obtained by minimizing the error. Apart from the plant, output, reference, controller, actuator,

and disturbances, closed-loop control system contains additional components as sensor and error

detector.

 Sensor is used to sense the output of the system and is fed to the input where error is

calculated.

 Error Detector determines the error being produced in the system. Error is calculated by

determining the difference between the output of the system and the reference input.

The general block diagram of Closed-Loop Control Systems is shown in the figure below.

Figure 7.3: Block Diagram of Closed-Loop Control System

Output Reference Input
Controller Actuator

Plant

Model

Disturbances

Controller
Output

Disturbances

Reference Input

Actuator
Plant

Model

Sensor

∑
Error

+ _

Chapter 7 – Control Systems

4

Comparison of Open-Loop and Closed Loop Control Systems

SN Open-Loop Control System Closed-Loop Control System

1. Feed Forward System: Output is not fed

back

Feed Back System: Output is fed back and

compared with input

2. It is simple and economical. It is complex and expensive

3. Good calibration can lead to good accuracy

but optimization is not possible

Feedback principle reduces error, increases

accuracy and supports optimization

4. It is slow and unreliable but stable It is fast and more reliable but unstable

7.3 General Control Systems and PID Controllers

Control Objectives

The main objective of control system design is to make output track the reference input even in

the presence of measurement noise, model error and disturbances. The objective fulfillment can

be analyzed and assessed through various metrics.

 Stability: For the system to be stable, all variables in the system remain bounded

 Performance: It describes how well the output is tracking the change in the reference input.

The various aspects of performance is shown in the figure below:

Figure 7.4: Aspect of performance metrics in Control system response.

Tr – Rise Time

Tp – Peak Time

Mp – Overshoot

Ts – Settling Time

X axis – Time

Y axis - Response

Chapter 7 – Control Systems

5

The different aspects of performance are discussed below:

o Rise Time (Tr) is the time required to change from 10% to 90% of its final value. It is

a measure of the ability of a system to fast input signals.

o Peak Time (Tp) is the time required to reach the first peak of the response.

o Overshoot (Mp) refers to an output exceeding its final, steady-state value. it is the

percentage amount by which the peak of the response exceeds the final value.

o Settling Time (Ts) is the time required for the system to settle down to within 1% of

its final value.

 Disturbance rejection: Disturbances are the undesired effects which cannot be eliminated

but its impact can be minimized.

 Robustness: The system to be designed must be able to tolerate the modeling error of the

plant. The stability and performance of the system should not be significantly affected by

the presence of model errors.

Transient Response and Steady State Response of Control System

Transient response occurs just after the system starts and when any undesired conditions occur.

The system’s response during the settling time is transient response. Whereas the Steady state

occurs after the system becomes settled. Steady State Error is defined as the difference between

the actual output and the desired output when system reaches steady state.

Modeling Real Physical Systems

The accurate modeling of the behavior of the plant is an essential factor in control system design.

Since the controller will be designed based on the plant model, the plant model must be accurate

as far as possible. The key features of real systems are:

 Continuous in nature: It responds as continuous variables and as continuous function of

time. Since real physical systems are continuously reacting, the plant model is represented

by differential equations. Though continuous in nature, equivalent discrete time model can

be determined. But the sampling period, however, must be selected much smaller than the

reaction time of the system. Such sampling ensures system does not change much between

sampling instants.

Chapter 7 – Control Systems

6

 Complexity: It is much more complex than any model we generally assume in our design.

Our model may not include nonlinear effects, all system states, or all system interactions.

Generally assumed model is a linear model which is sufficient when the variables of the

model have a small operating range.

Controller Design

Proportional Control

A Controller that multiplies the tracking error by a constant is referred as proportional control.

The form of proportional control is:

 u(t) = P * e(t)

Where, u(t) is the output of the controller, P is the proportional Constant, e(t) is the measured

error and is the difference between reference input and output of the system.

Proportional Constant affects transient response, steady state tracking error and disturbance

rejection. High value of proportional constant can cause system to become unstable by resulting

in high overshoot and oscillation, whereas low value of P will cause the system to be less response

or less sensitive, since rise time will be high for low value of P. Also the steady state error will be

high for low value of P. The following figure shows the response of an arbitrary control system for

different values of P.

Figure 7.5: Response of system for different values of proportional constant

Chapter 7 – Control Systems

7

Proportional and Derivative (PD) Control

Derivative action predicts system behavior and improves settling time and stability of the system.

Derivative term allows the transient response to be optimized without affecting the steady state

response and disturbance rejection characteristic. Hence, transient response and the steady state

error independently can be adjusted by using appropriate values of P and D in PD controller. The

form of PD control is:

 u(t) = P * e(t) + D * (e(t) – e(t-1))

Characteristics of PD control:

 Rise time reduces, improves damping, overshoot reduces, response is stable

The following figure shows the response of an arbitrary system for PD control action.

Figure 7.6: Effect of Derivative term

Proportional and Integral (PI) Control

A PI controller is a special case of the PID controller in which the derivative of the error is not

used. The integral term in PI control is the sum of the instantaneous error over time and the

accumulated error is multiplied by integral constant. Its output is given by

 u(t) = P * e(t) + I * (e(0) + e(1) + e(2) + … + e(t))

PI controller is used to eliminate the steady state error resulting from P controller. However, it has

undesirable impact on speed and stability of the system.

Chapter 7 – Control Systems

8

Characteristics of PI control

 Steady state accuracy improves, rise time increases, response is oscillatory

The following figure shows effect of different values of integral constant in the response of an

arbitrary system for PD control action.

Figure 7.7: Effect of Integral Term in system response

Proportional Integral and Derivative (PID) Control

PID controller is a feedback controller that helps to attain a set point irrespective of disturbances

or any variation in characteristics of the plant of any form. It calculates its output based on the

measured error and the three controller gains; proportional gain P, integral gain K, and derivative

gain D.

 The proportional gain simply multiplies the error by a factor P. It reduces steady state

errors while minimizes the effect of external disturbances.

 The integral term is a multiplication of the integral gain and the sum of the recent errors.

The integral term helps in getting rid of the steady state error and causes the system to

catch up with the desired set point.

 The derivative controller determines the reaction to the rate of which the error has been

changing and it increases damping and improves stability but has almost no effect on

steady state error.

Chapter 7 – Control Systems

9

Its output is given by

 u(t) = P * e(t) + I * (e(0) + e(1) + e(2) + … + e(t)) + D * ((e(1) – e(0))+(e(2) – e(1))+… + (e(t) – e(t-1)))

The general block diagram of PID controller is shown in the figure below:

Figure 7.8: General Block Diagram of PID Controller

The following figure shows effect of different values of P, I, D in the response of an arbitrary

system for PID control action.

Figure 7.9: Effects of different values of P, I, D in the response of an arbitrary system

Output

Disturbances

Error

_

+

Reference Input

Actuator
Plant

Model

Sensor

PID Controller

∑

P

I

D

∑

+

+
+

Chapter 7 – Control Systems

10

Summary of PID control action

Type Rise Time
Maximum

Overshoot
Settling Time

Steady-state

error
Stability

P Decrease Increase Small Change Decrease Degrade

I Decrease Increase Increase Eliminate Degrade

D Small Change Decrease Decrease No/Small Change Improve

(*Note: In above table, the effect is considered based on optimal value rather than increasing or decreasing the value

of Proportional, Integral and Derivative constant)

7.4 Software Coding of PID Controller

A PID controller can be implemented using software. At first, required initialization is done which

is followed by reading reference value and sensor value. Then, after that error can be calculated

which further is used to compute the output of PID controller. The refined output is fed to the

actuator which in turn controls the plant based on the value of proportional, integral and

derivative constant defined in the program. The pseudo code for the PID controller can be written

as:

 Set values for Pgain, Igain, Dgain

 Initialize prior_error = 0 and integral = 0

 Repeat following steps

o sensorValue = getValueFromSensor()

o refValue = getReferenceValue()

o error = refValue – sensorValue

o integral = integral + error*iterationTime

o derivative = (error – prior_error)/iterationTime

o output = Pgain * error + Igain * integral + Dgain * derivative

o setActuator(output)

o prior_error = error

o wait(iterationTime)

7.5 PID Tuning

PID tuning is the adjustment of its control parameters to the optimum values for the desired

control response. Quantitative analysis can be used to determine the values of P, I, and D.

Chapter 7 – Control Systems

11

However, quantitative analysis is not necessary when safety and cost of using plant is not a

concern. There are various methods for PID tuning, one of which is ad hoc tuning process. The

steps for ad hoc tuning process are

 Start with small value of P gain, D and I gains as 0

 Increase value of D gain until oscillation is seen, and then D gain is decremented by a

factor of 2 to 4.

 Then, increase value of P gain until oscillation or excessive overshoot is observed, and

then P gain is reduced by a factor of 2 to 4.

 Next, increase the value of I gain and reduce it slightly when oscillation or excessive

overshoot is seen.

 Above steps are repeated until satisfactory performance is achieved.

7.6 Practical Issues Related to Computer-Based Control

The various practical issues related to computer-based control are explained in the following

paragraphs.

a. Quantization and Overflow Error

Quantization error occurs when machine number is altered to fit the constraints of the

computer memory.

 Case I: when arithmetic results require more precisions than original values. For

example, in operation 0.50 x 0.25 = 0.125, the final result requires more precision.

 Case II: when analog signals from sensors are quantized by analog to digital converter it

can create quantization error. In quantization process limited set of discrete values are

defined and if the signal or value from the sensors doesn’t match the defined quantized

discrete values then rounding or truncation will occur which results in quantization

error. For example: When 4 levels are defined between -1.5 and 1.5 as -1.5, -0.75, 0,

0.75 and 1.5 then the value 1.3 will be taken as 1.5.

Overflow error occurs when the system attempts to operate on or results a number that

does not lie within the defined range of the system. For example, let us consider a case of

signed binary numbers where five bits are used to represent the magnitude while sixth or

MSB is used to represent sign. Using such representation, when two binary numbers 010010

(+18) and 010101 (+21) are added then it results in 100111 which is (-25) rather than (+39).

Since the first bit is used for sign representation, the undesirable output resulted due to

Chapter 7 – Control Systems

12

overflow error. The situation can get more complex if we consider multiplication operation

and floating point numbers.

b. Aliasing

Aliasing is the consequence of improper sampling process. It arises when a signal is

discretely sampled at a rate that is insufficient to capture the changes in the signal. In simple

term, aliasing causes the reconstructed signal to be different from original signal. It causes

different signals to become indistinguishable. Let us consider an example in which the

sampling is done at a period of 0.4 second which results a sampling frequency of 2.5 Hz.

Then the following signals will be indistinguishable

 y(t) = 1.0 * sin(6πt), frequency 3 Hz

 y(t) = 1.0 * sin(πt), frequency 0.5 Hz

Figure 7.10: Aliasing Illustration

For a sampling rate of 2.5 Hz, sine wave with frequency of 0.5 Hz is indistinguishable from

sine waves at 3 Hz, 5.5 Hz, 8 Hz and so on. Also, it can only correctly sample signal below

Nyquist Frequency, which is half the value of sampling rate.

c. Computation Delay

Delay results in control signal being applied later than desired time. Computation delay is

the attribute of many digital systems but too much delay results in performance

degradation. The effect of delay can be accurately analyzed and we need to characterize

implementation delay to ensure its effect is negligible in system’s performance.

Synchronous Design makes hardware delay to be characterized easily. Software delay,

however, is harder to predict. So, code should be organized carefully to make delay

Chapter 7 – Control Systems

13

predictable. Also code can be written with predictable timing behavior, such that the effect

of delay can be minimized to acceptable level.

7.7 Benefits of Computer-Based Control Implementation

The following are the benefits of computer-based control implementation.

a. Repeatability

Analog systems are more prone to aging, temperature and manufacturing tolerance effects

which cause results to vary with time. However, the digital systems can produce identical

results for longer time

b. Stability

Since digital systems are less prone to different sorts of degradations and optimizations can

be implemented efficiently, systems can become more stable.

c. Programmability

Advanced features can be easily implemented in digital systems but that would be very

complex in analog implementations. Few features include: control mode and gain switching,

on-line performance evaluation, data storage, performance parameter estimation, and

adaptive behavior.

d. Flexibility

Computer based control can be easily re-configured based on requirement which allows

periodic upgrade and enhancement of the system. It permits modification of the sequencing

and control procedures for different products and for frequent change in product

specifications.

Chapter 8 – IC Technology

1

 Introduction

 Full-Custom (VLSI) IC Technology

 Semi-Custom (ASIC) IC Technology

 Programmable Logic Device (PLD) IC Technology

Chapter 8 – IC Technology

2

8.1 Introduction

A structural representation of the system generally deals with the various components and their

interconnections to implement system’s functionality. IC technology is more about mapping the

structural representation to a physical implementation. The physical implementation can be

done using various methods, out of which full-custom, semi-custom and programmable

technologies are few common methods. As CMOS transistor is the core of every component, let

us take a look at CMOS transistor and different layers required for its physical implementations.

CMOS Transistor

CMOS transistor consists of three terminals: the source, drain, and gate. Source and drain are

created by implanting ions on the surface of silicon. Gate is formed using poly-silicon, and lies

between source and drain. Gate is placed on top of silicon and is isolated from silicon with the

help of silicon dioxide insulating layer. Gate voltage controls the current flowing from source to

the drain. In case of nMOS transistor, a high voltage at gate will attract electrons from silicon

substrate towards it resulting in formation of conducting channel between source and drain. For

a low voltage at gate, the conducting channel is not formed.

Figure 8.1: CMOS Transistor and Its Top-Down View

Layers in Physical Implementation

The transistor basically has three layers: diffusion layer for source and drain, oxide layer for

insulation, and poly-silicon layer for gate. For circuits, there will be number of transistors

connected together to represent particular functionality. These connections are represented by

metal layers. There can be number of metal layers based on complexity of circuit implemented.

Each metal layer is insulated from another layer using oxide layer. Hence, there exists number of

oxide layer.

Source Drain

Oxide

Gate

Gate

Source Drain

Chapter 8 – IC Technology

3

Figure 8.2: Basic Layers in Physical Implementation

 Example 1: Draw the transistor level circuit schematic and top-down view for a NAND gate

Figure 8.3: Circuit Schematic and top-down view of NAND gate

IC Manufacturing Process

Basically, IC manufacturing process can be divided into two phases: design phase and

manufacturing phase. In design phase, structural design and layout design is done, whereas

manufacturing phase includes various steps from mask creation to final IC packaging.

F = (xy)’

y

y

x

x

1

0

x

x

y

y

vdd

vss

Oxide Layer

Metal1 Layer

Oxide Layer

Oxide Layer

Silicon Substrate

Metal2 Layer

Poly-silicon Layer

ndiff pdiff

Chapter 8 – IC Technology

4

A. Design Phase

In design phase, the structural description along with the layout of the system is developed.

Initially, the behavioral description of the system is implemented using hardware description

language. The high-level HDL describes the circuit at the Register Transfer Level. The first step in

the synthesis process is compilation which converts high-level VHDL language into a netlist at

the gate level. The second process is speed and area optimization which is performed on gate-

level netlist. Finally, the physical layout of the system is generated with the help of place-and-

route software. The layout specifies the placement of every transistor and every wire

connecting those transistors. Several EDA (Electronic Design Automation) tools are available for

circuit synthesis, implementation, and simulation.

Figure 8.4: Design phase in IC manufacturing process

B. Manufacturing Phase

Manufacturing consists of several steps which are shown in the figure below and later each step

is explained briefly.

Figure 8.5: Manufacturing phase in IC manufacturing process

Mask Creation: The layout design of the system is translated into masks. The number of masks

requirement may vary based on number of layers defined by the systems complexity. Masks for

different layers – such as oxide layer, metal layers, etc – are generated. Generally, masks contain

number of identical regions, so that number of IC’s can be produced at once.

Structural Design

Behavioral Description

RT-level description

Gate-level netlist

Layout Design

Placement and

Connections

Optimization

Mask Creation

Layering on

Silicon

Wafer Creation

and Cleaning

Ion

Implantation

Cutout and

Packaging

Metallization

Wafer

Testing

Chapter 8 – IC Technology

5

Silicon Wafer Creation and its cleaning: In a crucible, high purity silicon is melted. Donor

impurity atoms can be added to dope the crystal. A seed crystal is dipped into molten silicon and

pulled upwards rotating it. And cylindrical ingot is extracted by controlling temperature

gradients, rate of pulling and speed of rotation. Finally, the ingot is sliced with a wafer saw and

polished to form wafers.

Figure 8.6: Silicon Wafer Creation

Wafer must be cleaned before any layer is deposited on it. Various cleaning methods can be

used. Chemical cleaning methods are commonly used. First method of chemical cleaning is by

using piranha solution in which wafer is immersed in hot mixture of hydrogen peroxide and

sulfuric acid. Another method is using sonic waves in cleaning solution which is known as

megasonic cleaning process. After the water is cleaned with chemical, it must be rinsed with De-

Ionized (DI) water. Finally, the wafer is dried using either nitrogen gun or by baking. Also spun

dry method can be used to make the wafer dry after cleansing process.

Layering on Silicon: Various layers are developed on the silicon surface. Layer for masks can be

created using different layering techniques. Photolithography, which uses optical radiation to

create patterns, is very common method in layering process. In this process, the layer required,

for example silicon dioxide, is built onto the silicon surface which is overlapped by photoresist.

Positive photoresist becomes soluble when UV rays are exposed on it. Using proper alignment,

the UV rays are passed through the masks which cast a shadow on the photoresist wherever the

layer of silicon dioxide is required. Then the soluble photoresist is washed using appropriate

solvent. Finally, the exposed silicon dioxide is etched away using chemicals and the remaining

photoresist is removed to expose the regions of silicon dioxide that we required in our layer. The

whole process is repeated for each layer.

Melting of

Silicon

Introducing

Seed Crystal

Growth of

Crystal

Rotating and

Pulling

Cylindrical

Ingot

Chapter 8 – IC Technology

6

Ion Implantation: Ions are accelerated at a very high energy and impinged on the target. The ion

energy ranges from several KeV to MeV. The main purpose of ion implantation is doping in

which impurities are added into wafer. This process is finalized with annealing process that

repairs the lattice damage inflicted by high energy ions.

Figure 8.7: Ion Implantation and Lattice Damage after Implantation

Metallization: in this stage, a thin-film metal layer is produced which interconnects various

circuit elements on the chip. Metallization also produces metalized area around the edge of the

chip, also referred as bonding pads. Metal film can be deposited by physical vapor deposition

(PVD) and chemical vapor deposition (CVD).

Wafer Testing: Number of ICs is produced in a single silicon wafer, which are subjected to test

for errors or faulty ones. Testers or wafer probes are equipments used to test the correctness of

the IC’s by inspecting the output response for the streams of input.

Chip Cutout/Packaging: Individual IC from wafer is cut out using a diamond scribe. Verified ones

are mounted in an IC package which encapsulates the IC. Packaging prevents physical damage

and corrosion, also supports electrical contact. Through hole package and surface mount

package are examples of IC packaging. Single In-line Packaging and Dual In-line Packaging are

types of through hole packaging.

 PHOTOLITHOGRAPHY

Photolithography is the process which transfers a pattern from a mask to a light-sensitive

chemical photoresist on the substrate. The word photolithography is from the Greek origin:

photo means light, litho means stone and graphy means writing. It uses optical radiation to

create patterns of complex circuit on a wafer. The various steps involved in photolithographic

process are deposit barrier layer, photoresist coating, soft bake, mask alignment and exposure,

develop photoresist, hard bake, etch window in barrier layer and remove photoresist.

Chapter 8 – IC Technology

7

 The various steps of photolithography are explained below:

A. Deposit Barrier Layer

Barrier layers are the materials which are required to be laid on the substrate. It may be silicon

dioxide, silicon nitride, poly-silicon, metals, etc. Different methods can be used for barrier

formation: thermal oxidation, chemical vapor deposition, sputtering and vacuum evaporation.

Silicon dioxide as a barrier layer is used to isolate one layer from another. For instance, it is used

in electrical isolation of multilevel metallization. Silicon Dioxide can be grown using dry oxidation

which uses O2 gas in a chamber or wet oxidation in which the wafer is submerged in water.

When heat is applied to the oxidation process, it increases the rate of SiO2 growth.

B. Photoresist Coating

Photoresist is a substance which changes its characteristics when exposed to UV light. Before

photoresist is coated, hexamethyldisilazane (HMDS) is used on the surface to improve adhesion.

After that, liquid photoresist is coated over barrier layer using spin coating method. In this

method, the wafer is held on vacuum chuck which is spun at about 3000-6000 rpm for about 15-

30 seconds. Appropriate spinner rotational speed and viscosity of resist are essential factors to

define photoresist’s thickness which is about few micro-meters.

Figure 8.8: Photoresist Coating – Spin Coating Method

Types of Photoresist

Positive photoresist is insoluble in normal state but becomes soluble when exposed to UV light.

Negative photoresist is soluble in normal state but becomes insoluble when exposed to UV light.

Photoresist Dispenser

Photoresist

Vacuum Chuck

Excess photoresist

flying off

Chapter 8 – IC Technology

8

C. Soft Bake or Pre Bake

Soft bake is simply the process of heating the wafer which removes the solvent from the

photoresist. Baking time and temperature depend on the type of photoresist used and baking

method. Different baking methods include hotplate, oven baking and microwave baking.

D. Mask Alignment and Exposure

Mask is simply an opaque plate with holes to pass UV rays. It contains pattern to be formed on

wafer. Mask is aligned with the wafer accurately with the help of special device: steppers use

automatic pattern recognition and alignment systems. Alignment masks are available on the

mask and on wafer so as to make alignment more precise.

Once the mask has been precisely aligned, the photoresist is exposed through the pattern on

the mask with a controlled amount of UV light. Exposure will cause exposed positive photoresist

to become soluble whereas if negative photoresist is used then exposed part of it becomes

insoluble. There are three primary exposure methods: contact, proximity, and projection.

Figure 8.9: Different Exposure Methods

Contact Printing: In contact printing, the resist-coated silicon wafer and mask are brought into

physical contact when exposed to UV light. This method results in very high resolution but the

Small Gap

Photoresist

Contact Proximity Projection

Light

Source

Optical

System

Mask

Wafer

Chapter 8 – IC Technology

9

debris, trapped between the resist and the mask, can damage the mask and cause defects in the

pattern.

Proximity Printing: In this method, small gap is maintained between wafer and the mask during

exposure. The gap minimizes the risk of mask damage at the expense of resolution.

Projection Printing: in this printing method, an image of the patterns on the mask is projected

onto the resist-coated wafer. High gap eliminates the risk of mask damage and high resolution is

possible. For high resolution, only a small portion of the mask is imaged and stepped over the

surface of the wafer.

E. Develop Photoresist

Barrier layer is exposed when the soluble photoresist is chemically washed away using a

developer solution. In immersion develop method the photoresist-coated wafer is immersed in

a developer solution. Then, it is rinsed with DI water and dried using spin dry method.

F. Hard Bake or Post Bake

Hard bake is used to stabilize and harden developed photoresist. It not only improves adhesion

of the photoresist but also removes traces of solvent or developer solution. But, however,

improper post bake can cause resist removal more difficult. Baking time and temperature can

vary based on type of photoresist and baking method.

G. Etch Window in Barrier Layer

As hardened photoresist does not shield all part of barrier layer, etching method is implemented

to remove the barrier layer which was left uncovered. Two methods of etching can be

implemented: wet etch, also known as chemical etching, and dry etch, also known as plasma

etching. In Wet etching method, wafer is submerged in HF acid and unprotected barrier layer is

removed. Dry etch method uses plasma which collides with the surface and removes the layers

of target material.

H. Remove Photoresist

Finally, the remaining photoresist is stripped from the surface exposing the required barrier

layer. Photoresist can be removed by using solvent strippers, which cause the resist to swell and

lose adhesion from the substrate. Another method of photoresist removal is by burning the

resist in an oxygen plasma system and this process is called Resist Ashing.

Chapter 8 – IC Technology

10

 The photolithography process can be summarized diagrammatically as:

Figure 8.10: Various steps of photolithography process

8.2 Full-Custom (VLSI) IC Technology

Full-Custom IC technology includes VLSI (Very Large Scale Integrated Circuit) design in which the

designer designs the complete transistor-level circuit for every processor, memory and other

components used in the design. In this technology, first the designer creates layouts for basic

components. And then, components are placed and connected, which are later translated to

masks. Finally, the masks are given to the manufacturer for fabrication of IC of final design. The

design steps are shown in the figure 8.11.

- Barrier Layer - Photoresist - Mask

- UV light - Solvent Evaporating

Deposit Barrier

Layer

Photoresist

Coating

Soft Bake Mask Alignment

and Exposure

Develop

Photoresist

Hard Bake Etching Photoresist

Removal

Chapter 8 – IC Technology

11

Figure 8.11: Full-Custom IC Technology

Placement, routing and sizing are few important physical design tasks that should be done

carefully for an efficient layout design. Placement represents the task of placing and orienting

the transistors on the IC. Routing is the task of connecting wires between the transistors. In

sizing, width of each wire along with size of transistor is taken into considerations. Placement

and routing should be done so as to avoid overlapping of transistors and wires. Placement also

defines the length of wire required to connect transistors. Large size of wires and transistors

provide better performances, but it increases power consumption and demands more silicon

area in the IC. Compact layout can lead to an efficient design. For instance, transistor placed at

closer distance requires shorter connecting wires, which further decreases the silicon size in the

IC. In early days, compact designs were implemented using hand layout technique which is

generally used for small and critical components. Today, however, physical design tools are used

for automatic layout of the design which runs for hours or days to generate the optimized layout

for better performance.

Advantages

Excellent efficiency: With respect to power consumption, performance and size, full-custom IC

technology can be highly efficient. Since layout design is done by the designer, the components

can be placed closer to each other which can be connected using short wires. Such layout yields

optimum performance, size and power.

No wasted area and no unused transistors: In full-custom design, the required transistors for the

circuit are placed on the IC. But there are no unused transistors which prevents wasted area.

Disadvantages

High NRE Cost and Long Time-to-market: Designing a complete layout, even with the help of

CAD tools, can be time-consuming and prone to error. In addition to that, creating masks for

ALU

Designed Layouts of

basic components

Components are placed and

connected, later translated to masks

IC fabricated from masks of

designed layout

Chapter 8 – IC Technology

12

every layer of IC adds more time in design process. Also, manufactured IC may contain errors

leading to requirement of several re-spins. All these factors cause full-custom IC technology to

have high NRE cost and long time-to-market.

8.3 Semi-Custom (ASIC) IC Technology

In semi-custom IC technology, designer does not require to create full-custom layout rather

connects the pre-positioned building blocks. The use of chip with pre-existing gates will lessen

the design work of layout and mask creation. So, the NRE cost is reduced while the time-to-

market is relatively fast as compared to full custom IC technology. But, however, there will be a

reduction in performance in terms of power, size and speed. Two types of semi-custom IC

technologies are described in the following paragraphs.

Gate Array Semi-Custom IC Technology

In a gate array IC technology, a chip with arrays of pre-designed logic gates is utilized to

implement the desired circuit. Here, the masks for transistor and gate levels are already

designed, so the designer has the task of connecting pre-designed gates to achieve the desired

implementation. In this technology, a set of masks of predefined gates are provided to the

designer who then provides the connections among gates to implement require circuit. Masks

of connections are generated and all masks are used to fabricate the IC.

Figure 8.12: Gate Array Semi Custom IC Technology

This technology results in fast and relatively inexpensive design cycles. But, gates are placed in

advance which may result in many unused gates, since all instances of each type of gate may not

IC fabricated from masks

Connections to implement

desired circuit, which are

translated into masks

Set of masks of predefined

gates

Chapter 8 – IC Technology

13

be required in our desired circuit. Also, the fixed placement of gates can result in long routing

wires between gates as the connection is not known while gates are already placed.

Figure 8.13: A simplified gate array layout

Standard Cell Semi-Custom IC Technology

In standard cell semi-custom IC technology, functional blocks, which are also called cells, with

known electrical characteristics are utilized in the design to achieve very high gate density and

good electrical performance. Cells may include logic gates such as NAND, NOR etc and other

function blocks like multiplexor, flip-flop etc. In this technology, designers are facilitated with a

library of predesigned cells from which the designer selects the required cells that are needed in

the desired circuit. Masks of cells are created after the cells are placed and connected. Also the

masks of connections among cells are generated. Using those masks, the IC is fabricated.

Figure 8.14: Standard Cell Semi-Custom IC Technology

2x1

IC fabricated from masks

Placement and connections

among cells, whose masks are

generated

Library with predesigned cells

Chapter 8 – IC Technology

14

The designer selects the cell, its position and its routing mechanism. So, it requires more NRE

cost and longer time-to-market as compared to gate-array technology but still requires less than

that of full-custom. However, the efficiency is better compared to gate array but less efficient

than full-custom design. Hence, standard cell design lies between gate array and full custom

design in terms of NRE cost, time-to-marker and performance.

Figure 8.15: A simple standard cell layout

8.4 Programmable Logic Device (PLD) IC Technology

In programmable logic device IC technology, there exist programmable circuits which are

programmed by the designer to implement the required design. Programming, in this case,

means creating or breaking connections between wires that connect gates, either by blowing a

fuse with high current, or setting a bit in a programmable switch. In this technology, a pre-

fabricated chip with no logic function programmed is made available to the designer who then

programs the required portions of the chip to implement the desired functionality.

It offers the designer the facility of changing design functions even after it has been

programmed. PLD can be programmed, erased, and reprogrammed number of times, allowing

easier prototyping and design modification.

There is a wide variety of PLD types, including Simple PLD, Complex PLD, GAL (Generic Array

Logic), FPGA (Field-Programmable Gate Array) as well as many others left unmentioned.

Programmable Logic Array (PLA) and Programmable Array Logic (PAL) are two examples of

Simple Programmable Logic Devices (SPLD). Programmable Logic Array (PLA) consists of two

planes of logic arrays: a programmable array of AND gates and a programmable array of OR

gates. The AND plane and the OR plane give the possibility to computer any function expressed

FF

4X1 MUX

AND_3

NOR_2

AND_2

OR_3

2X1 MUX

FF

Cell Library

Chapter 8 – IC Technology

15

as a sum of products. Every AND gate in AND plane is associated with inputs and complement of

inputs to generate any product term. And, OR gate generates the sum of AND gate outputs. The

example of PLA is shown in the figure below.

Example 2: Implement the following truth table using PLA

A B C F1 F2 F3 F4

0 0 0 0 0 1 1

0 0 1 0 1 0 1

0 1 0 0 1 0 1

0 1 1 0 1 0 1

1 0 0 0 1 0 1

1 0 1 0 1 0 1

1 1 0 0 1 0 1

1 1 1 1 1 0 0

Figure 8.16: PLA implementation for given truth table

A B C

F1 F2 F3 F4

A’B’C’

A’B’C

A’BC’

A’BC

AB’C’

AB’C

ABC’

ABC

F1 = ABC

F2 = A + B + C

F3 = A’B’C’

F4 = A’ + B’ + C’

Chapter 8 – IC Technology

16

Programmable Array Logic uses just one programmable array: fixed OR matrix and

programmable AND matrix. It decreases number of expensive programmable components which

further reduces size and delay. PLA and PAL are generally used for low-complexity problems

which require fairly high speed. As the complexity grows, Complex Programmable Logic Devices

(CPLD) must be used. CPLDs are the integration of numerous SPLDs with added programmable

interconnect between them. CPLD is a combination of fully programmable AND/OR array which

perform a multitude of logic functions and microcells which perform combination or sequential

logic. CPLDs may use analog sense amplifiers to boost the performance but at the cost of very

high current requirements.

Chapter 9 - Microcontrollers in Embedded Systems

1

 Intel 8051 Micro-controller family, its architecture and instruction sets

 Assembly language programming

 Interfacing with seven segment display

Chapter 9 - Microcontrollers in Embedded Systems

2

9.1 Intel 8051 Micro-controller family, its architecture and instruction sets

A. Introduction

Microcontroller is a small computer on a single IC which contains processor core along with

memory, I/O ports and other features. Microcontrollers are used in embedded applications in which

systems are controlled automatically to carry out certain application. Almost every system using

microcontroller performs control-oriented tasks. Several peripheral devices are inbuilt within the

microcontroller to carry out the specified function. Timers, ADC and serial communication devices

are few examples of peripheral devices.

B. Block Diagram

The general block diagram of the microcontroller is shown in the figure below:

Figure 9.1: General block diagram of microcontroller

C. Comparison with Microprocessor

Many would easily presume that microcontroller and microprocessor to be similar. However, the

following table will make a clear distinction between microcontroller and microprocessor.

SN Microprocessor Microcontroller

1. General purpose processors Special purpose processors

2. It contains complete functional CPU only In addition to functional CPU, it has timers,

I/O ports, internal RAM and ROM, and other

features

3. Designer can select the size of memory,

number of I/O ports, timers etc to be used

Size of memory, number of I/O ports, timers

etc are fixed for a particular microcontroller

Microcontroller

CPU

RAM

ROM

I/O Ports

Timer

Serial Port

Other

Features

Chapter 9 - Microcontrollers in Embedded Systems

3

4. Clock speed in very high in GHz range Clock speed is low in MHz range

5. Powerful addressing modes and many

instructions are available to move data

between memory and CPU

It focuses on bit handling instructions along

with byte processing instructions.

6. Access time for external memory and I/O

devices is more

Access time for on-chip memory and I/O

devices is less

7. Microprocessor based systems are

expensive and consumes more power

Microcontroller based systems are cheap

and consumes less power

D. Criteria For Choosing a Microcontroller

 It must meet the computational needs of the task efficiently and cost effectively. Other

considerations includes

o Speed, packaging (DIP(dual line package), QFP(quad flat package)), power consumption,

amount of RAM and ROM, number of I/O pins and the timer on the chip

o Ease to amendments, cost per units

 It must provide flexibility to develop products around it. Some of the considerations include

availability of an assembler, debugger, C compiler, emulator, technical support.

 It along with other reliable resources must be readily available in required quantities at any

instant of time.

E. Comparison of 8051 Family Members

Each member of 8051, somehow, differs from each other. Though the instruction sets are

almost common, the features provided can vary. The 8031 microcontroller is also referred as

ROMLESS 8051 as all features are common expect ROM space. The following table shows

comparison of 8051, 8052 and 8031 microcontrollers.

Table 9.1: Comparison of three microcontrollers

Feature 8051 8052 8031

ROM 4K 8K 0K

RAM (bytes) 128 256 128

Timers 2 3 2

I/O Pins 32 32 32

Chapter 9 - Microcontrollers in Embedded Systems

4

Serial Port 1 1 1

Interrupt Sources 6 8 6

F. 8051 ARCHITECTURE

Internal Block Diagram of 8051

Figure 9.2: Internal block diagram of 8051 Architecture

Features of 8051 Architecture

 Eight bit CPU with registers A and B: Register A or Accumulator is used for mathematical and

data transfer operations. Register B is used for multiplication and division purpose.

 Sixteen bit program counter (PC) and data pointer (DPTR): PC points to the address of next

instruction to be executed from ROM while DPTR is used to point to the memory addresses for

internal and external code access and external data access. DPTR is made up of two 8 bit

registers, DPH and DPL.

 Eight bit program status word (PSW): Four flags in PSW are used to represent the outcomes of

mathematical operations; Carry (CY), Auxiliary Carry (AC), Overflow (OV), and Parity (P) flags. It

also consists two register select bits which select the particular register bank; RS1 and RS0

determines which register bank is being used out of four register banks.

 Eight bit stack pointer (SP): SP points to the stack which is the area to store and retrieve data

quickly for some operations. It follows last in first out technique.

Oscillator

and Timing

8051 CPU

Interrupt

Control

64Kbyte Bus

Expansion

Control

Programmable

I/O

Serial Port

UART

Program

Memory

4K ROM

Data Memory

128 bytes

RAM

Two 16 bit

Timer/Event

Counters

Internal Bus

External Interrupts Control Parallel Ports Serial In Serial Out

Chapter 9 - Microcontrollers in Embedded Systems

5

 Internal ROM: It consists of 4 Kbytes or memory space as program memory. Look up tables can

also be stored which can be accessed using appropriate instruction.

 Internal RAM: It consists of 128 bytes of memory space as data memory.

o Four Register Banks, each with eight registers (R0 – R7): Bank 0 occupies address from 00H

to 07H and consecutive addresses are used by bank 1, bank 2 and bank 3. Total 32 registers

are available from address 00H to 1FH. Bank 0 is selected as default. RS1 = 0 and RS0 = 1 in

PSW register will select the register bank 1.

o Sixteen bytes of bit addressable memory: The address from 20H to 2FH of RAM is bit

addressable. It is useful in bit manipulating operations. Each bit can be addressed using

direct address from 00H to 7FH.

o Eighty bytes of general purpose data memory: The memory space from address 30H to 7FH

can be used for various operations when required.

Figure 9.3: Internal RAM Organization

 Thirty two I/O pins arranged as four 8 bit ports: Four ports are bidirectional and can be used for

input and output. Some of the pins are multifunctional which provide other functions along with

input and output.

 Two 16 bit timer/counters (T0 and T1): Each counter can be programmed to count internal

clock pulses, acting as a timer, or programmed to count external pulses as a counter. This

selection as well as mode of operation of counter can be set by using Timer Mode Control

(TMOD) register.

 Full Duplex serial data receiver/transmitter: Register Serial Control (SCON) controls serial data

communication, and pins RXD and TXD are used to connect to other devices supporting serial

Bank 0

R0

R2

R3

R4

R6

R7

R1

R5

R0

R2

R3

R4

R6

R7

R1

R5

R0

R2

R3

R4

R6

R7

R1

R5

R0

R2

R3

R4

R6

R7

R1

R5

0F

00

07

08

17

10 18

1F

Bank 1 Bank 2 Bank 3

Bit

Addressable

Memory

2F

20 00 07

7F 78

7F

30

General

Data

Memory

Chapter 9 - Microcontrollers in Embedded Systems

6

communication. The Serial Buffer (SBUF) register is used to hold data in serial communication

process.

 Two external interrupts and three internal interrupt sources: Interrupt Enable (IE) register

selects which interrupt is to be selected and enabled. INT0 and INT1 pins are used by external

circuitry to interrupt processor. Timer overflow (TF), receive interrupt (RI), and transmit

interrupt (TI) are internal interrupts.

 The 8051 Oscillator and Clock: It is the circuitry that generates the clock pulses by which all

internal operations are synchronized. Time for particular instruction execution can be calculated

based on number of machine cycles required by the instruction. For AT89S51, operating

frequency is 11.0592 and its machine cycle consists of 12 clocks. So, time period for one

machine cycle is 12 times the time period of single pulse which is equivalent to 1.085µs.

8051 Special Function Registers (SFRs)

They are a group of specific internal registers that use internal RAM and their address lie between

80H and FFH. Some SFRs are bit addressable which allows programmer to access each bit of the

register. The list of SFRs is given in the table below:

Table 9.2: List of Special Function Registers

Name Description RAM Address Access Level

A Accumulator 0E0H Bit Addressable

B Register B, for multiplication and division 0F0H Bit Addressable

PSW Program Status Word 0D0H Bit Addressable

SP Stack Pointer 81H

DPH Data Pointer Higher Byte 83H

DPL Data Pointer Lower Byte 82H

IE Interrupt Enable 0A8H Bit Addressable

IP Interrupt Priority 0B8H Bit Addressable

P0 Port 0 80H Bit Addressable

P1 Port 1 90H Bit Addressable

P2 Port 2 0A0H Bit Addressable

P3 Port 3 0B0H Bit Addressable

PCON Power Control 87H

Chapter 9 - Microcontrollers in Embedded Systems

7

SCON Serial Port Control 98H Bit Addressable

SBUF Serial Port Data Buffer 99H

TMOD Timer/Counter Mode Control 89H

TCON Timer/Counter Control 88H Bit Addressable

TL0 Timer 0 Low Byte 8AH

TH0 Timer 0 High Byte 8CH

TL1 Timer 1 Low Byte 8BH

TH1 Timer 1 High Byte 8DH

G. Pin Descriptions

Pins 1 – 8 (PORT 1)

These eight pins represent PORT 1 which can be used as an input/output port. Since it is internally

pulled up, it can be used without any external pull up registers configuration.

Pin – 9 (RESET)

RESET pin is used to set different registers to its initial values. The RESET pin must be set high for 2

machine cycles.

Figure 9.4: Pin descriptions of 8051 microcontroller

RST

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
 20

40
39
38
37
36
35
34
33
32
 31
30
29
28
27
26
25
24
23
22

 21

8051

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7

P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
P3.6
P3.7

P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7

P2.7
P2.6
P2.5
P2.4
P2.3
P2.2
P2.1
P2.0

0

(AD0)
(AD1)

(AD2)

(AD3)

(AD4)

(AD5)

(AD6)

(AD7)

(AD15)
(AD14)

(AD13)

(AD12)

(AD11)

(AD10)

(AD9)

(AD8)

(RXD)
(TXD)

(INT0)

(INT1)

(T0)

(T1)

(WR)
(RD)

XTAL2
XTAL1

GND

VCC

EA/VPP
ALE/PROG
PSEN

Chapter 9 - Microcontrollers in Embedded Systems

8

Pins 10 – 17 (PORT 3)

These pins together called PORT 3 are bi directional and multifunctional in nature. Similar to port 1,

it can be used as input or output without any external pull up registers configuration. Besides I/O, it

supports serial communication (RXD and TXD), external interrupts (INT0 and INT1), timers (T0 and

T1), and control signals (WR and RD) for external memory.

Pins 18 – 19 (XTAL)

These pins are used to connect an external crystal to provide system clock.

Pin – 20 (GND, 0V)

Pins 21 – 28 (PORT 2)

These pins are bidirectional and multifunctional in nature. PORT 2 may be used as an input or

output port similar to port 1. The alternate use of port 2 is to provide a high-order address in

conjunction with the port 0 to address external memory.

Pin 29 (PSEN)

Program Store Enable (PSEN) is connected to Output Enable (OE) pin of external memory being

interfaced. It is an active low output signal. When this pin is reset, microcontroller can read content

of external memory location.

Pin 30 (ALE)

Address Latch Enable (ALE) is used to select address or data signal that are required while

interfacing external memory. It is active high output signal and when it goes high, the lower address

provided by port 0 is latched into the external address latch. This pin is also the program pulse input

during flash programming

Pin 31 (EA)

External Access enables or disables access of program from external memory. It must be connected

to GND to fetch code from external program memory locations. It should be strapped to VCC for

program executions of internal memory.

Pins 32 - 39 (PORT 0)

PORT 0 is a collection of open drain bidirectional I/O pins. It can be configured as low-order address

or data bus while accessing external memory.

Pin 40 (VCC, +5V)

Chapter 9 - Microcontrollers in Embedded Systems

9

H. Minimum Hardware Configuration

Power Supply: Pin 40 is connected to +5VDC, Pin 20 is grounded. Pin 31 is connected to VCC,

representing the code is accessed from internal memory.

Reset Circuit: Charging of capacitor makes RST high, which ensures two machine cycles on RST pin.

After completion of charge, capacitor blocks DC causing RST low.

Figure 9.5: Minimum configuration for microcontroller to operate

Oscillator circuit: Ceramic capacitors of value between 20µF – 40µF are used as stabilizing

capacitors. They act as loading capacitor and adjust the crystal frequency by shifting the frequency

to a lower value.

Pull up Circuit: Pins of PORT 0 are open drain, so require pull up circuit. Each pin must be connected

externally to a 10K ohm pull-up resistor.

I. 8051 Instruction Sets

Different symbols are used in the instruction whose meaning is clarified below:

#data – represents 8 bit data

Rn – represents one of eight registers (R0, R1, R2, R3, R4, R5, R6, R7)

@Ri – represents address pointed by value of Ri. Ri can be either R0 or R1.

AT89S51

33pF

33pF

8.2K

10µF

VCC

31

20
19

18

9

40
39

32

10K

Chapter 9 - Microcontrollers in Embedded Systems

10

direct – represents direct byte addressable memory

bit – direct bit addressable memory

C – Carry, A – Accumulator, B – Register B

addr11 – 11 bit address, addr16 – 16 bit address and rel – 8 bit relative address

1. Data Transfer Instructions

SN Mnemonics Operation Description

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

MOV A, Rn

MOV A, direct

MOV A, @Ri

MOV A, #data

MOV Rn, A

MOV Rn, direct

MOV Rn, #data

MOV direct, A

MOV direct, Rn

MOV direct, direct

MOV direct, @Ri

MOV direct, #data

MOV @Ri, A

MOV @Ri, direct

MOV @Ri, #data

MOV DPTR, #data16

MOVC A, @A + DPTR

MOVC A, @A + PC

MOVX A, @Ri

MOVX A, @DPTR

MOVX @Ri, A

MOVX @DPTR, A

PUSH direct

POP direct

XCH A, Rn

A  Rn

A  [direct]

A  [Ri]

A  data

Rn  A

Rn  [direct]

Rn  data

[direct]  A

[direct]  Rn

[direct]  [direct]

[direct]  [Ri]

[direct]  data

[Ri]  A

[Ri]  [direct]

[Ri]  data

DPTR  data16

A  [A + DPTR]

A  [A + PC]

A  [Ri]

A  [DPTR]

[Ri]  A

[DPTR]  A

Stack  [direct]

[direct]  Stack

A  Rn, Rn  A

MOV instruction is used to

transfer data involving registers,

memory and immediate data

MOVC is used to read data from

code memory (ROM)

MOVX is used to move data to

and from external RAM. R0, R1

and DPTR are used to hold

address of RAM

Chapter 9 - Microcontrollers in Embedded Systems

11

26

27

28

XCH A, direct

XCH A, @Ri

XCHD A, @Ri

A  [direct], [direct]  A

A  [Ri], [Ri]  A

2. Arithmetic Instructions

SN Mnemonics Operation Description

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

ADD A, Rn

ADD A, direct

ADD A, @Ri

ADD A, #data

ADDC A, Rn

ADDC A, direct

ADDC A, @Ri

ADDC A, #data

SUBB A, Rn

SUBB A, direct

SUBB A, @Ri

SUBB A, #data

INC A

INC Rn

INC direct

INC @Ri

DEC A

DEC Rn

DEC direct

DEC @Ri

INC DPTR

MUL AB

DIV AB

DA A

A  A + Rn

A  A + [direct]

A  A + [Ri]

A  A + data

A  A + Rn + C

A  A + [direct] + C

A  A + [Ri] + C

A  A + data + C

A  A - Rn - C

A  A - [direct] - C

A  A - [Ri] - C

A  A - data - C

A  A + 1

Rn  Rn + 1

[direct]  [direct] + 1

[Ri]  [Ri] + 1

A  A – 1

Rn  Rn – 1

[direct]  [direct] – 1

[Ri]  [Ri] – 1

DPTR  DPTR + 1

A  Lower Byte

B  Higher byte

A  Quotient

B  Remainder

Decimal Adjust accumulator

Accumulator is one of

the sources as well as

destination for every

ADD and SUB

instructions

Chapter 9 - Microcontrollers in Embedded Systems

12

3. Logical Instructions

SN Mnemonics Operation Description

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

ANL A, Rn

ANL A, direct

ANL A, @Ri

ANL A, #data

ANL direct, A

ANL direct, #data

ORL A, Rn

ORL A, direct

ORL A, @Ri

ORL A, #data

ORL direct, A

ORL direct, #data

XRL A, Rn

XRL A, direct

XRL A, @Ri

XRL A, #data

XRL direct, A

XRL direct, #data

CLR A

CPL A

RL A

RLC A

RR A

RRC A

SWAP A

A  A AND Rn

A  A AND [direct]

A  A AND [Ri]

A  A AND data

[direct]  [direct] AND A

[direct]  [direct] AND data

A  A OR Rn

A  A OR [direct]

A  A OR [Ri]

A  A OR data

[direct]  [direct] OR A

[direct]  [direct] OR data

A  A XOR Rn

A  A XOR [direct]

A  A XOR [Ri]

A  A XOR data

[direct]  [direct] XOR A

[direct]  [direct] XOR data

A  0

A  A’

Rotate A left

Rotate A left through C

Rotate A right

Rotate A right through C

Swap nibbles of A

Logical AND, OR and XOR

allows direct operation on

memory address as well.

4. Bit Manipulation and Program Branching Instructions

SN Mnemonics Operation Description

Chapter 9 - Microcontrollers in Embedded Systems

13

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

CLR C

CLR bit

SETB C

SETB bit

CPL C

CPL bit

ANL C, bit

ANL C, /bit

ORL C, bit

ORL C, /bit

MOV C, bit

MOV bit, C

JC rel

JNC rel

JB bit, rel

JNB bit, rel

JBC bit, rel

ACALL addr11

LCALL addr16

RET

RETI

AJUMP addr11

LJUMP addr16

SJMP rel

JMP @ A + DPTR

JZ rel

JNZ rel

CJNE A, direct, rel

CJNE A, #data, rel

CJNE Rn, #data, rel

CJNE @Ri, #data, rel

C  0

bit  0

C  1

bit  1

C  C’

bit  bit’

C  C AND bit

C  C AND bit’

C  C OR bit

C  C OR bit’

C  bit

bit  C

Jump if C  1

Jump if C  0

Jump if bit  1

Jump if bit  0

Jump if bit  1, and b  0

Absolute jump to routine

Long jump to routine

Return from subroutine

Return from interrupt

Absolute jump

Long jump

Short jump

Jump relative to DPTR

Jump if A is zero

Jump if A is not zero

Compare and jump if not

equal

Short jumps must be within

128 to +127 bytes of the

contents of PC

Long Jumps and calls can be

used for any location within

64 Kbyte address space

Absolute jumps and calls can

be used for address within

2Kbyte range

Chapter 9 - Microcontrollers in Embedded Systems

14

32

33

DJNZ Rn, rel

DJNZ direct, rel

Decrease and jump if not

zero

J. Addressing Modes in 8051

Immediate Addressing Mode

The source operand is a constant value which must be preceded by # sign. It is used to load direct

values into registers. For example, MOV A, #25H will assign 25 to register A.

Register Direct Addressing Mode

The operand is a register which holds the data to be manipulated. For example, ADD A, R5 will add

content of A and R5, and store back in A.

Register Indirect Addressing Mode

Register is used to point the effective address of the operand. Registers R0, R1 and DPTR are used as

pointer registers which must be preceded by @ sign. For example, MOV A, @R0 represents copying

the contents of the address in R0 to the accumulator.

Direct Addressing Mode

The operand represents the actual address of RAM in the instruction. For instance, MOV A, 80H

moves the data of 80H into accumulator.

Relative Addressing

A relative address or offset is added to the PC to form the actual address. Generally used in jump

instructions.

Absolute Addressing Mode

In instructions, 11-bit or 16-bit absolute address is specified as the operand. ACALL and AJMP

instructions use 11-bit address while LCALL and LJMP use 16-bit address.

Indexed Addressing Mode

Index value or displacement is added to the base address to generate the effective address of the

operand. For instance, MOVC A, @A + DPTR uses indexed addressing mode. The content pointed by

(A + DPTR) address of ROM is copied to accumulator.

9.2 Assembly language programming

An assembly language program consists of series of statements which include assembly language

instructions and directives. Assembly language instruction represents the operation to be carried

out by the processor. Every instruction is composed of mnemonic followed by one, two or no

Chapter 9 - Microcontrollers in Embedded Systems

15

operand. Mnemonic represents the actual operation to be done which operands are data items

being manipulated. Directives are used to give directions to the assembler. Generally used directives

are DB, ORG, END, and EQU. The DB directive is used to define 8-bit data. The ORG represents the

beginning of the program address while END represents the end of program. The EQU directive is

used to define constant within a program. The numbers used must be followed by H to represent

hex value otherwise the value will be taken as decimal.

The assembly language program, in general, is written using following format:

[label:] Mnemonic [operands] [; comments]

Example 1: Read the content of port1 and port2, OR those contents and store the result in external

RAM location 0310.

Problem Analysis: Port1 (with address 90H) and Port2 (with address A0H) provide eight bit data, so

after OR operation the final result will also be of eight bit. Hence, single byte memory location is

enough to store the result. However, to store the result in external RAM, the address of external

RAM must be loaded into DPTR register and MOVX instruction should be used for data transfer.

Source Code:

 ORG 00H

 MOV A, 90H ; copy the data of port1 to A

 ORL A, 0A0H ; OR the contents of A with port2, and stored in A

 MOV DPTR, #0310H ; DPTR used to point the external RAM address

 MOVX @DPTR, A ; move the content of A to RAM location pointed by DPTR

 END

Example 2: Read the content of internal RAM locations 27H and 28H, add them and store the result

in RAM locations 30H and 31H.

Problem Analysis: The largest possible value at memory locations can be FFH, so the maximum

value of final result will be FFH + FFH = 01FEH. Hence, two bytes of memory is required to store the

result. To solve this, ADD instruction must be used to add two data while ADDC or JNC/JC can be

used to add the carry.

Source Code:

 ORG 00H

MOV 30H, #00H ; [30]  00, assigns zero to memory location 30H

 MOV A, 27H ; A  [27], assigns content of location 27H to accumulator

Chapter 9 - Microcontrollers in Embedded Systems

16

 ADD A, 28H ; A  A + [28], adds content of A and memory location 28H

 MOV 31H, A ; [31]  A, moves the lower byte or result to 31H address of RAM

 MOV A, #00H ; A  00, reset accumulator

 ADDC A, 30H ; A  A + [30] + C, to extract the value of carry

 MOV 30H, A ; [30]  A, move upper byte to location 30.

 END

Example 3: Add the content of internal RAM location 29H and port1, and store the result in RAM

locations 30H and 31H in BCD form.

Problem Analysis: In BCD, the largest possible value can be 99, so the maximum value of final result

will be 99 + 99 = 198. Hence, two bytes of memory is required to store the result. To solve this, ADD

instruction must be used to add two BCD data and DA instruction after addition. However, DA

instruction is not required for upper byte of result as it is less than 10. But, had there been more

numbers causing upper byte to exceed more than 9, DA would have been required for upper byte as

well.

Source Code:

 ORG 00H

MOV 30H, #00H ; [30]  00, assigns zero to memory location 30H

 MOV A, 90H ; A  [90], assigns content of Port1 to accumulator

 ADD A, 29H ; A  A + [29], adds content of accumulator and location 29H

 DA A ; Adjust the content of accumulator to BCD form

 MOV 31H, A ; [31]  A, moves the lower byte or result to 31H address of RAM

 MOV A, #00H ; A  00, reset accumulator

 ADDC A, 30H ; A  A + [30] + C, to extract the value of carry

 MOV 30H, A ; [30]  A, move upper byte to location 30.

 END

Example 4: Add 10 bytes of data of RAM location starting from address 20H. Store lower byte at 30H

and upper byte at 31H.

 Problem Analysis: Use of direct RAM address can make program complex, so R0 or R1 can be used

to point the one byte address of RAM location. The register (R0 or R1) then can be incremented to

access data of consecutive locations. The final sum after addition of 10 bytes of data can result in

Chapter 9 - Microcontrollers in Embedded Systems

17

two bytes of data. So, carry must be checked after addition and value in register must be

incremented accordingly when carry is resulted after addition.

 Source Code:

 ORG 00H

 MOV R0, #20H ; R0  20H, assigning starting address of RAM to R0

 MOV R5, #0AH ; R5  0AH, counter for 10 bytes of data

 MOV R6, #00H ; R6  00H, used for lower byte result

 MOV R7, #00H ; R7  00H, used for upper byte result

 HOME:

 MOV A, @R0 ; A  [R0], move content of RAM location pointed by R0 to A

 ADD A, R6 ; A  A + R6, adds data of RAM location in each iteration

 JNC NEXT ; checking if carry is generated after addition

 INR R7 ; R7  R7 + 1, carry after each addition is added to form upper byte

 NEXT:

 MOV R6, A ; R6  A, move partial sum to R6

 INR R0 ; R0  R0 + 1, increment the address of RAM to access next byte

 DJNZ R5, HOME ; decrease R5 by 1 and jump to HOME if R5 is not equal to zero

 MOV 30H, R6 ; [30]  R6, move the lower byte to memory address 30H

 MOV 31H, R7 ; [31]  R7, move the upper byte to memory address 31H

 END

 Example 5: ASCII character string is stored in the program memory starting at 300H. Send each

character to port 2.

 Problem Analysis: Since the data is stored in the program memory (ROM), DPTR must be used to

point the address of ROM. Using MOVC instruction, the data can be retrieved and further

manipulated as required.

 Source Code:

 ORG 00H

 MOV DPTR, #300H ; load address of data into DPTR

HOME:

 CLR A ; A  0, clear the content of A

 MOVC A, @A + DPTR ; A  [A + DPTR], load ROM content of address (A + DPTR) to A

Chapter 9 - Microcontrollers in Embedded Systems

18

 JZ EXIT ; jump out of loop if last character is detected which is 0

 MOV P2, A ; P2  A, move content of accumulator to port 2

 INC DPTR ; DPTR  DPTR + 1, to point to next character of ROM

 SJMP HOME ; Continue the loop

 ORG 300H

 DB “ASSEMBLY PROGRAM”, 0

EXIT:

 NOP

END

9.3 Interfacing with seven segment display

A. Seven Segment Configurations

Pin Configurations

The figure shows the pin configuration of seven segment display which consists of 10 pins; eight pins

to control the leds and two common pins which are grounded or connected to VCC based on

common cathode or common anode configuration.

Figure 9.6: Pin Configurations of Seven Segment Display

Modes of Configurations

There are two modes of configurations: Common Anode Configuration and Common Cathode

Configuration. In common anode configuration, anodes of all leds are connected together to form a

common pin which must be connected to high logic voltage. In common cathode configuration,

cathodes of all leds are connected together to form a common pin which must be connected to low

logic voltage.

f a b

c d e

g

h

a

b

c

d

e

f
g

h

com

com

Chapter 9 - Microcontrollers in Embedded Systems

19

Figure 9.7: Common Anode Configurations

Figure 9.8: Common Cathode Configurations

Lookup table of HEX equivalent

For common anode configurations, low logic must be provided to the pins of the seven segment

display to glow the particular led. The equivalent hex values are sent through the port of

microcontroller. However, designer must be aware of the driving circuit which should provide the

equivalent hex to the pins of seven segment display.

Common Anode Configurations For Common

Cathode mode
Digits

Individual LEDs Illuminated
HEX

h g f e d C b a HEX

0 1 1 0 0 0 0 0 0 0xC0 0x3F

1 1 1 1 1 1 0 0 1 0xF9 0x06

2 1 0 1 0 0 1 0 0 0xA4 0x5B

3 1 0 1 1 0 0 0 0 0xB0 0x4F

4 1 0 0 1 1 0 0 1 0x99 0x66

5 1 0 0 1 0 0 1 0 0x92 0x6D

Chapter 9 - Microcontrollers in Embedded Systems

20

6 1 0 0 0 0 0 1 0 0x82 0x7D

7 1 1 1 1 1 0 0 0 0xF8 0x07

8 1 0 0 0 0 0 0 0 0x80 0x7F

9 1 0 0 1 0 0 0 0 0x90 0x6F

B. Interfacing Seven Segment

Before connecting the seven segment display to the port of microcontroller, the current

requirement of the seven segment display along with the source current and sink current capacity of

the microcontroller must be examined. However, it is always better to use the driving circuit rather

to connect seven segment display directly to the port of microcontroller.

Hardware Connections

Any port of the microcontroller can be used to connect to the seven segment display through the

driving circuit. The driving circuit may be in the form of an IC which can sink or source high current.

The circuit configurations can vary depending on the designer. IC ULN2003 is an example of a

current sinker while IC L293D can be a good source of current for driving circuits.

Figure 9.9: Connection of common anode seven segment with microcontroller

Coding Implementations

In Assembly language, simple MOV instructions can be used to transfer HEX value to the seven

segment display. For example, MOV P2, #92 will display the digit 5 for common anode

configurations. Using C programming language, simple assignment can be done. For example, P2 =

Microcontroller

Driving

Circuit

P1.0

P1.7

a

h

Chapter 9 - Microcontrollers in Embedded Systems

21

0x92; will display digit 5. However, appropriate delay or repetition mechanism must be used to

ensure that the digit displays for certain duration and becomes observable to the designer or user.

Delay Calculation in assembly program

Actual time of the execution of instructions can be determined by making use of the operating

frequency of the microcontroller and machine cycles required by the instructions. The total machine

cycles required by the instruction is multiplied by time duration of one machine cycle to calculate the

total time.

DELAY:

 MOV R4,#64H ; MC = 1, executes only once

AGAN: MOV R3,#0AH ; MC = 1, executes 100 times

AGA: DJNZ R3,AGA ; MC = 2, executes 100 x 10 = 1000 times

 DJNZ R4,AGAN ; MC = 2, executes 100 times

 RET ; MC = 2, executes 1 time

In 8051, crystal frequency is 11.0592MHz and one machine cycle (MC) is equal to 12 clock cycles.

So, 1 MC = 1.085µs.

Total machine cycles in DELAY subroutine = 1 + 1x100 + 2x1000 + 2x100 + 2 = 2303

Total time duration = 2303 x 1.085µs = 2.5ms

Chapter 9 - Microcontrollers in Embedded Systems

22

FEW SOLVED EXAMPLES

1. Write an assembly and C language program to generate a pulse of 50% duty cycle at pin P2.3 of

8051 microcontroller.

 Problem Analysis: Duty cycle of 50% represents equal ON and OFF time at pin P2.3, so an arbitrary

delay is required after setting P2.3 and after resetting P2.3.

Source Code:

ORG 00H

CLR P2.3

Back:

 CLR P2.3

 LCALL DELAY

 SETB P2.3

 LCALL DELAY

 SJMP Back

 ORG 300H

DELAY:

 MOV R5,#64H

AGAIN: MOV R4,#0FFH

AGAN: MOV R3,#08H

AGA: DJNZ R3,AGA

 DJNZ R4,AGAN

 DJNZ R5,AGAIN

 RET

END

In C programming language

#include<at89x52.h>

void delay(unsigned char x)

{

 int i, j;

 for(i=0;i<x;i++)

 for(j=0;j<1275;j++);

}

void main()

{

 P2_3 = 0;

 while(1)

 {

 P2_3 = 1;

 delay(50);

 P2_3 = 0;

 delay(50);

}

}

Chapter 9 - Microcontrollers in Embedded Systems

23

2. Control the LED connected at 2.1 by a SWITCH which is connected to P1.3. ON/OFF status of LED is

defined by ON/OFF status of SWITCH.

 Problem Analysis: This is a simple data movement problem in which a bit from one pin P1.3 of

microcontroller is assigned to another pin P2.1. The code can vary based of LED configuration and

SWITCH configuration used. Two cases are given below:

CASE I: The SWITCH will generate high logic when pressed and LED will glow when high logic is

assigned to pin 2.1.

Source Code:

ORG 00H

CLR P2.1

SETB P1.3

Back:

 MOV C, P1.3

 MOV P2.1, C

SJMP Back

END

CASE II: The SWITCH will generate low logic when pressed and LED will glow when high logic is

assigned to pin 2.1.

Source Code:

ORG 00H

CLR P2.1

SETB P1.3

Back:

 MOV C, P1.3

CPL C

 MOV P2.1, C

SJMP Back

END

#include<at89x52.h>

void main()

{

 P2_3 = 0;

 P1_3 = 1;

 while(1)

 {

 P2_1 = P1_3;

}

}

#include<at89x52.h>

void main()

{

 P2_3 = 0;

 P1_3 = 1;

 while(1)

 {

 P2_3 = !P1_3;

}

}

Chapter 9 - Microcontrollers in Embedded Systems

24

3. Using an assembly and C language program, generate a pulse of 75% duty cycle at pin P1.7 when

the switch connected to P1.1 is ON.

 Problem Analysis: Duty cycle of 75% represents ON time three times more than OFF time at pin

P1.7. The status of P1.1 must be checked continuously. Based on the logic level at P1.1 after button

is pressed, delay in case of ON time must be three times more than that of OFF time. In the code

below, we assume the switch connects P1.1 to ground when pressed and P1.1 connected to VCC

when not pressed. So, a low logic at P1.1 will generate the required pulse using appropriate delay.

Source Code:

ORG 00H

 CLR P1.7

 SETB P1.1

BACK:

 MOV C, P1.1

 JC BACK

 SETB P1.7

 LCALL DELAY

LCALL DELAY

LCALL DELAY

 CLR P1.7

 LCALL DELAY

 SJMP BACK

ORG 300H

DELAY:

 MOV R5, #64H

AGAIN: MOV R4, #0FFH

AGAN: MOV R3, #08H

AGA: DJNZ R3, AGA

 DJNZ R4, AGAN

 DJNZ R5, AGAIN

 RET

END

include<at89x52.h>

define OUT P1_7

define SW P1_1

void delay(unsigned int x)

{

 int i,j;

 for(i=0;i<x;i++)

 for(j=0;j<1275;j++);

}

void main()

{

 OUT = 0;

SW = 1;

 while(1)

 {

 if(SW == 0)

 {

 OUT = 1;

 delay(300);

 OUT = 0;

 delay(100);

 }

 }

}

Chapter 9 - Microcontrollers in Embedded Systems

25

4. Write an assembly and C language program to generate a count from 0 to 9 using a seven segment

display. Use Common Cathode configurations.

 Problem Analysis: The equivalent HEX values are directly assigned one by one to the required port.

Certain delay after each digit display can be placed to control the speed of count.

Source Code:

ORG 00H

 MOV P2, #00H

BACK:

 MOV P2, #3FH

 LCALL DELAY

 MOV P2, #06H

 LCALL DELAY

 MOV P2, #5BH

 LCALL DELAY

 MOV P2, #4FH

 LCALL DELAY

 MOV P2, #66H

 LCALL DELAY

 MOV P2, #6DH

 LCALL DELAY

 MOV P2, #7DH

 LCALL DELAY

 MOV P2, #07H

 LCALL DELAY

MOV P2, #7FH

 LCALL DELAY

 MOV P2, #6FH

 LCALL DELAY

 SJMP BACK

ORG 300H

DELAY:

 MOV R5, #64H

AGAIN: MOV R4, #0FFH

AGAN: MOV R3, #08H

AGA: DJNZ R3, AGA

 DJNZ R4, AGAN

 DJNZ R5, AGAIN

 RET

END

ALTERNATIVE CODE:

Problem Analysis: The HEX values are not directly assigned rather stored in memory and accessed

using data pointer (DPTR). DPTR is used to point to the HEX values and MOVC instruction must be

used to access the HEX values. MOVC uses accumulator to represent offset as well as data. The

value of accumulator is added to DPTR to represent the address of memory and finally the data is

stored into accumulator.

Chapter 9 - Microcontrollers in Embedded Systems

26

Source Code:

ORG 00H

 MOV P2, #00H

 MOV R6, #00H

 MOV DPTR, #DIGITS

MAIN:

 MOV A, R6

 MOVC A, @A+DPTR

 MOV P2, A

 LCALL DELAY

 INC R6

 CJNE R6, #0AH, MAIN

MOV R6, #00H

SJMP MAIN

DELAY:

 MOV R3, #0F0H

DEL1: MOV R2, #0FAH

DEL2: DJNZ R2, DEL2

 DJNZ R3, DEL1

RET

DIGITS:

 DB 3FH, 06H, 5BH, 4FH, 66H

 DB 6DH, 7DH, 07H, 7FH, 6FH

END

include<at89x52.h>

define DISPLAY P2

void delay(unsigned int x)

{

 unsigned int i,j;

 for(i=0;i<x;i++)

 for(j=0;j<1275;j++);

}

char digits[] = {0x3F, 0x06, 0x5B, 0x4F,

0x66, 0x6D, 0x7D, 0x07, 0x7F, 0x6F};

void main()

{

 unsigned char i;

 DISPLAY = 0x00;

 while(1)

 {

 for(i=0;i<10;i++)

 {

DISPLAY = digits[i];

 delay(100);

 }

 }

}

Chapter 9 - Microcontrollers in Embedded Systems

27

5. A PUSH BUTTON is connected to P1.1, increase the count in SEVEN SEGMENT when the button is

pressed.

 Source Code:

ORG 00H

 SETB P1.1

MOV P2, #00H

 MOV R6, #00H

 MOV DPTR, #DIGITS

MAIN:

 MOV A, R6

 MOVC A, @A+DPTR

 MOV P2, A

 MOV C, P1.1

 JC MAIN

 LCALL DELAY

 INC R6

 CJNE R6, #0AH, MAIN

MOV R6, #00H

SJMP MAIN

DELAY:

 MOV R3, #0F0H

DEL1: MOV R2, #0FAH

DEL2: DJNZ R2, DEL2

 DJNZ R3, DEL1

RET

DIGITS:

 DB 3FH, 06H, 5BH, 4FH, 66H

 DB 6DH, 7DH, 07H, 7FH, 6FH

END

include<at89x52.h>

define DISPLAY P2

define SW P1_1

void delay(unsigned int x)

{

 unsigned int i,j;

 for(i=0;i<x;i++)

 for(j=0;j<1275;j++);

}

char digits[] = {0x3F, 0x06, 0x5B, 0x4F,

0x66, 0x6D, 0x7D, 0x07, 0x7F, 0x6F};

void main()

{

 unsigned char i = 0;

 DISPLAY = 0x00;

 while(1)

 {

 DISPLAY = digits[i];

 if(SW == 0)

 {

 i++;

 if (i>9)

 i = 0;

 delay(20);

}

 }

}

Chapter 9 - Microcontrollers in Embedded Systems

28

6. Using two seven segment displays, build a down counter which counts from 99 to 00. Make

appropriate assumptions wherever necessary.

 Description: Two ports can be used to display two digits. However, it is better to use a single port

for both seven segment displays and control their display through control lines. Two digits

separately are sent at different instant of time. Corresponding seven segment display must be

enabled while the digits are sent at different instant. However, the time duration between sending

of lower digit and upper digit must not be high. High delay can lead to flickering effect which causes

both digits to be displayed one by one rather than simultaneously. Also the speed of count can be

controlled by using appropriate repetition of each display of both digits.

Source Code:

ORG 00H

 MOV P2, #00H

 MOV R6, #09H ; counter for lower byte

 MOV R7, #09H ; counter for upper byte

 MOV R5, #07h ; to control speed of counter

 MOV P3, #00H

 MOV DPTR, #LABEL1 ; loads the starting address of hex code list to DPTR

MAIN:

 MOV A, R6

 SETB P3.0 ; activates 2nd display to display lower byte

 CLR P3.1 ; deactivates the 1st display

 LCALL DISPLAY

 LCALL DELAY

 MOV A, R7

 SETB P3.1 ; activates 1st display

 CLR P3.0 ; deactivates the 2nd display

LCALL DISPLAY

 LCALL DELAY

 DJNZ R5, MAIN ; repetition of same display to control speed

 MOV R5, #07H

Chapter 9 - Microcontrollers in Embedded Systems

29

 DEC R6 ; decrease value of R6

CJNE R6, #-1, MAIN ; compare unless R6 becomes less than zero

MOV R6, #09H

DEC R7

 CJNE R7, #-1, MAIN

MOV R7, #09H

 SJMP MAIN

DISPLAY:

 MOVC A,@A+DPTR ; load HEX value to accumulator from memory

 MOV P2, A ; sending HEX value to SEVEN SEGMENT through P2

RET

DELAY:

 MOV R3, #F0H

DEL1: MOV R2, #0FAH

DEL2: DJNZ R2, DEL2

 DJNZ R3, DEL1

RET

LABEL1: ; represents starting address of HEX value list

 DB 3FH, 06H, 5BH, 4FH, 66H, 6DH, 7DH, 07H, 7FH, 6FH

END

Equivalent code in C language

Description: Within infinite loop, the first loop is used to select the upper byte, the second loop is

used to select the lower byte and the third loop is used to control the speed of count.

Source Code:

 # include<at89x52.h>

define DISPLAY P2

define SEL0 P3.1

define SEL1 P3.0

Chapter 9 - Microcontrollers in Embedded Systems

30

void delay(unsigned int x)

{

 unsigned int i,j;

 for(i=0;i<x;i++)

 for(j=0;j<1275;j++);

}

char digits[] = {0x3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D, 0x7D, 0x07, 0x7F, 0x6F};

void main()

{

 char i, j, k;

 DISPLAY = 0x00;

 while(1)

 {

for(i = 9; i >= 0; i++) // loop for upper byte

{

for(j = 9; j >= 0; j--) // loop for lower byte

{

for(k = 0; k<7; k++) // loop to control the speed of count

{

DISPLAY = digits[j];

SEL0 = 0;

SEL1 =1;

 delay(5);

 DISPLAY = digits[i];

 SEL0 = 1;

 SEL1 = 0;

 delay(5);

 }

 }

 }

}

 }

Chapter 10 – VHDL

1

 Introduction

 VHDL Code Structure

 Data types, Data Objects and Operators

 Statements in VHDL

 Standard Architectures

 FSM Design

Chapter 10 – VHDL

2

10.1 Introduction

VHDL is a hardware description language. It is used to describe the behavior of an electronic

system, which further enables designer to implement the physical system. VHDL stands for

VHSIC Hardware Description Language, where VHSIC is an acronym for Very High Speed

Integrated Circuits.

The main purpose of VHDL is to model and synthesize digital circuits. Simulation and testing of

the design for the optimum operation can be done using VHDL model of the system. Also, digital

integrated circuits for particular operations can be created using VHDL or other hardware

description languages. Finally, VHDL code can be used to create actual functional system. Hence,

VHDL code can be used either to implement the circuit in a programmable device or can be

forwarded for fabrication.

VHDL Invariants

 It is not case sensitive.

 It is not sensitive to white space.

 Comments begin with two consecutive dashes (“--“).

 Parenthesis usage is optional in many cases.

 Every statement in VHDL is terminated with a semicolon.

 Statements are inherently concurrent. Only statements placed inside a PROCESS,

FUNCTION, or PROCEDURES are executed sequentially.

10.2 VHDL Code Structure

Fundamental VHDL Units

VHDL code comprises of at least the three fundamental sections: LIBRARY Declaration, ENTITY

and ARCHITECTURE. LIBRARY is a collection of pre-defined set of codes that can be re-used or

shared by various designs. ENTITY specifies the I/O connections of the system. ARCHITECTURE

contains the code that describes how the circuit should function.

LIBRARY DECLARATION

The general from is:

LIBRARY LIBRARY_NAME;

USE LIBRARY_NAME.PACKAGE_NAME.PACKAGE_PARTS;

Example:

LIBRARY IEEE;

Chapter 10 – VHDL

3

USE IEEE.STD_LOGIC_1164.ALL;

The libraries STD and WORK are made visible by default, so they are not required to declare.

However, STD_LOGIC_1164 package of IEEE library must be declared when STD_LOGIC data type

is used in the design. Similarly, for SIGNED and UNSIGNED data types and its related arithmetic

and comparison operations, package STD_LOGIC_ARITH of LIBRARY IEEE must be declared.

ENTITY

The VHDL ENTITY declaration describes the interface or the external representation of the

circuit. An ENTITY is a list of all input and output pins with its specification such as data type and

data direction mode.

Its syntax is:

 ENTITY ENTITY_NAME IS

 PORT (

 PORT_NAME: SIGNAL_MODE SIGNAL_TYPE;

 PORT_NAME: SIGNAL_MODE SIGNAL_TYPE;

 …

);

END ENTITY_NAME;

Here, ENTITY_NAME and PORT_NAME are identifiers. The SIGNAL_MODE which defines the

direction of signal can be IN, OUT, INOUT, or BUFFER. IN and OUT are unidirectional pins, while

INOUT is bidirectional. The data type or SIGNAL_TYPE can be BIT, STD_LOGIC, INTEGER, etc.

 Example 1: Entity of AND gate with two inputs each of one bit.

 ENTITY AND_GATE IS

 PORT (

 IN_A : IN STD_LOGIC;

 IN_B : IN STD_LOGIC;

 OUT_Z : OUT STD_LOGIC

);

END AND_GATE;

Example 2: Entity of 4x1 MUX with each input of three bits

 ENTITY MUX IS

 PORT (

 A, B, C, D : IN STD_LOGIC_VECTOR(2 DOWNTO 0);

 SEL : IN STD_LOGIC_VECTOR(1 DOWNTO 0);

Chapter 10 – VHDL

4

 Z : OUT STD_LOGIC_VECTOR(2 DOWNTO 0)

);

END MUX;

ARCHITECTURE

The ARCHITECTURE describes how the circuit should function. It describes the internal

implementation of the associated entity. There are several models that are followed by

architecture to describe the operation of the circuit.

The general form of ARCHITECTURE is:

ARCHITECUTRE architecture_name OF entity_name IS

 [declarations]

BEGIN

 [code]

END architecture_name;

Here, declarative part is optional and includes signal and constant declarations. Code part

includes different VHDL statements describing the system to be designed.

Example 1: ARCHITECTURE of AND gate with two inputs each of one bit.

 ARCHITECTURE AND_ARCH OF AND_GATE IS

 BEGIN

 OUT_Z <= IN_A AND IN_B;

 END AND_ARCH;

10.3 Data types, Data Objects and Operators

A. DATA TYPES

Pre-Defined Data Types

VHDL contains a series of pre-defined data types. Such data type definitions can be found in

various packages or libraries.

o Package STANDARD of library STD includes BIT, BOOLEAN, INTEGER, and REAL.

o Package STD_LOGIC_1164 of library IEEE includes STD_LOGIC and STD_ULOGIC.

Various pre-defined data types are listed in the table below:

SN TYPE LEVEL/RANGE DESCRIPTION

1. BIT 2 LOGIC LEVEL 0, 1

2. BIT_VECTOR 2 LOGIC LEVEL 0, 1

Chapter 10 – VHDL

5

3. STD_LOGIC 8 VALUED LOGIC X, 0, 1, Z, W, L, H, -

4. STD_LOGIC_VECTOR 8 VALUED LOGIC X, 0, 1, Z, W, L, H, -

5. STD_ULOGIC 9 VALUED LOGIC U, X, 0, 1, Z, W, L, H, -

6. STD_ULOGIC_VECTOR 9 VALUED LOGIC U, X, 0, 1, Z, W, L, H, -

7. BOOLEAN 2 VALUES TRUE, FALSE

8. INTEGER -2147483647 TO +2147483647 32 BIT NUMBER

9. NATURAL 0 TO +2147483647

10. REAL -1.0E38 TO +1.0E38

11. SIGNED POSITIVE AND NEGATIVE USED IN ARITHMETIC

OPERATIONS 12. UNSIGNED POSITIVE

13. PHYSICAL TIME, VOLTAGE USED IN SIMULATION

Here, various logic levels represent: ‘U’ – Unresolved, ‘X’ – Forcing Unknown, ‘0’ – Forcing

Low, ‘1’ – Forcing High, ‘Z’ – High Impedance, ‘W’ – Weak unknown, ‘L’ – Weak Low, ‘H’ –

Weak High, ‘-‘ – Don’t care. STD_LOGIC levels are intended for simulation only. When a

node has two STD_LOGIC signals connected, then conflicting logic levels are resolved

automatically in case of STD_LOGIC whereas such conflict is not resolved in STD_ULOGIC.

For arithmetic operations using STD_LOGIC, packages STD_LOGIC_SIGNED and

STD_LOGIC_UNSIGNED must be used.

User Defined Data Types

VHDL allows users to define their own data types. There are two categories of user- defined

data types.

o User-Defined Integer Type

General form:

TYPE TYPE_NAME IS RANGE LOW_VALUE TO HIGH_VALUE;

Example:

TYPE TEMPERATURE IS RANGE -125 TO 125;

TYPE MARKS IS RANGE 0 TO 100;

o User-Defined Enumerated Type

General Form:

Chapter 10 – VHDL

6

TYPE TYPE_NAME IS (VALUE1, VALUE2… VALUEN);

Example:

TYPE COLOR IS (RED, GREEN, BLUE, WHITE);

Based on bits requirement encoding of enumerated type is done sequentially and

automatically, unless specified.

B. DATA OBJECTS

An object is an item in VHDL that has both name and a specific type. Commonly used data

objects are signals, variables and constants.

CONSTANTS are used to assign default values in the code. It can be declared in PACKAGE,

ENTITY or ARCHITECTURE. Declaring CONSTANTS in PACKAGE makes if global, since PACKAGE

can be used by several entities. If it is declared in an ENTITY, it can be shared by all

ARCHITECTURE that follows that ENTITY. When defined within ARCHITECTURE the scope of

CONSTANTS are limited to that ARCHITECTURE only.

 Declaration:

 CONSTANT name:TYPE:= value;

 Examples:

 CONSTANT high:STD_LOGIC:=’1’;

 CONSTANT count:INTEGER:=10;

SIGNAL is used to pass value in and out of the circuit and within internal units. It simply

represents interconnection of circuit. All ports of ENTITY are signals by default. The change in

the SIGNAL may not be updated immediately, since the value is more likely to get updated after

the completion of its corresponding PROCESS, FUNCTION or PROCEDURE. Similar to CONSTANT,

it can be declared in PACKAGE, ENTITY or ARCHITECTURE.

 Declaration:

 SIGNAL name: TYPE [range] [:= initial_value];

The part inside the square bracket may or may not be present depending upon

data types used and requirement of initialization.

 Examples:

 SIGNAL start: STD_LOGIC:=’0’;

 SIGNAL count: INTEGER RANGE 0 TO 100;

Chapter 10 – VHDL

7

VARIABLE represents the local information. Its value cannot be passed out directly. The change

in value is immediately updated; new value can be promptly used in next line of code. It can be

declared and used inside a PROCESS, FUCNTION or PROCEDURE.

Declaration:

VARIABLE name: type [range] [:= initial value];

Examples:

VARIABLE count: INTEGER:=0;

VARIABLE a : STD_LOGIC_VECTOR(7 DOWNTO 0);

C. OPERATORS

 The various operators supported by VHDL are tabulated below:

 ASSIGNMENT OPERATORS

SN Operator Assign Value To Examples

1. <= Signal X <= ‘1’; Y<=”101;

2. := Variable, constant, generic, and for

initialization

Z := “1001”;

Z is a variable

3. => Individual Elements or with OTHERS W <= (0=> ‘1’, OTHERS => ‘0’)

LSB assigned 1 and others as 0

 LOGICAL OPERATORS

SN Operators Description/Example Supported Data Type

1. NOT Inverts the signal, High Precedence
BIT

STD_LOGIC

STD_ULOGIC

BIT_VECTOR

STD_LOGIC_VECTOR

STD_ULOGIC_VECTOR

2. AND Result high when both inputs is high

3. OR Result high when one of the inputs is high

4. NAND X <= a NAND b

5. NOR Z <= NOT a NOR B

6. XOR Complements the bit when XORed with 1

7. XNOR Complements the bit when XNORed with 0

 RELATIONAL OPERATORS

SN Operators Description

1. = Equal to

Chapter 10 – VHDL

8

2. /= Not equal to

3. < Less than

4. > Greater than

5. <= Less than or equal to

6. >= Greater than or equal to

 ARITHMETIC OPERATORS

SN Operator Meaning Description

1. + Addition

2. - Subtraction

3. * Multiplication

4. / Division Limited to powers of two

5. ** Exponentiation Limited to powers of two

6. MOD Modulus X MOD Y results value with sign of Y

7. REM Remainder X REM Y results value with sign of X

8. ABS Absolute Value

Avoid Using MOD operator when dealing with negative numbers

 SHIFT OPERATORS

SN Operator Meaning Description

1. SLL Shift Left Logic Zeros are fed from one end and bits are lost from

other end. Sign bit never changes in arithmetic

shift.

“10101” SLL 3 results in “01000”

2. SRL Shift Right Logic

3. SLA Shift Left Arithmetic

4. SRA Shift Right Arithmetic

5. ROL Rotate Left “1001” ROL 2 results in “0110”

6. ROR Rotate Right

 CONCATENATION OPERATOR

The concatenation operator (&) is used to combine values of similar data type. The following

example will illustrate the use of concatenation operator.

Example:

 signal A, B : std_logic_vector (3 downto 0); -- Signal A and B of 4 bits

signal C : std_logic_vector (5 downto 0); -- Signal C of 6 bits

Chapter 10 – VHDL

9

signal D : std_logic_vector (7 downto 0); -- Signal D of 8 bits

 C <= A & “00” ; -- 4 bits of A and two bits “00” assigned to C

 D <= B & A ; -- 4 bit of A and B combined and assigned to D

10.4 STATEMENTS IN VHDL

A. CONCURRENT STATEMENTS

Concurrent Signal Assignment

 Syntax:

 Target<= expression;

 Examples:

 A <= B NAND C;

 X <= (D OR E) AND (F AND G);

Conditional Signal Assignment

Syntax:

 Target < = expression when condition else

 expression when condition else

 expression;

Example:

 Z <= ‘1’ when (L=‘0’ AND M=‘0’) else

 ‘1’ when (L=‘1’ AND M=‘1’) else

 ‘0’;

Selective Signal Assignment

Syntax:

 with choose_expression select

 target <= expression when choices,

 expression when choices;

Example:

 with SEL select

 M_OUT <= A3 when “11”,

 A2 when “10”,

 A1 when “01”,

Chapter 10 – VHDL

10

 A0 when “00”,

 ‘0’ when others;

Process Statement

Syntax:

label: process(sensitivity list)

begin

 sequential statements

end process label;

B. SEQUENTIAL STATEMENTS

Signal Assignment

Syntax:

target <= expression;

Example:

 A <= B NAND C;

 X <= (D OR E) AND (F AND G);

IF statements

Syntax:

if (condition) then

 { sequence of statements }

elsif (condition) then

 { sequence of statements }

else

 { sequence of statements }

end if;

 Example:

if (SEL = “111”) then F_OUT <= D(7);

elsif (SEL = “110”) then F_OUT <= D(6);

elsif (SEL = “101”) then

 F_OUT <= D(1);

elsif (SEL = “000”) then

 F_OUT <= D(0);

Chapter 10 – VHDL

11

else F_OUT <= ‘0’;

end if;

CASE statements

 Syntax:

case (expression) is

when choices =>

 sequential statements

when choices =>

 sequential statements

when others => -- (optional)

 sequential statements

end case;

 Example:

 case (ABC) is

when “100” =>

 F_OUT <= ‘1’;

when “011” =>

 F_OUT <= ‘1’;

when “111” =>

 F_OUT <= ‘1’;

when others =>

F_OUT <= ‘0’;

end case;

10.5 Standard Architectures

A. Dataflow Style Architecture

Dataflow style architecture specifies a circuit as a concurrent representation of the flow of

data through the circuit. In this modeling, the internal working of a system is implemented

using concurrent statements. It can be used for small and primitive circuits but not for

complex designs. In this style of architecture, whenever there is a change in signal of right

hand side, the expression is evaluated and assigned to left hand side.

Chapter 10 – VHDL

12

Example:

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

ENTITY HALF_ADDER IS

 PORT (

 A, B: IN STD_LOGIC;

 S, C: OUT STD_LOGIC

);

END HALF_ADDER;

 ARCHITECTURE HALF_ADDER_ARCH OF HALF_ADDER IS

 BEGIN

 S <= A XOR B;

 C <= A AND B;

 END HALF_ADDER_ARCH;

B. Behavior Style Architecture

The behavioral style architecture models how the circuit outputs will behave to the

circuit inputs. This model may not reflect how the circuit is implemented when it is

synthesized. Process statement is the core part of behavioral style architecture. In

this style, the internal working is implemented using sequential statements within

process statements.

Example:

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

ENTITY HALF_ADDER IS

 PORT (

 A, B: IN STD_LOGIC;

 S, C: OUT STD_LOGIC

);

END HALF_ADDER;

Chapter 10 – VHDL

13

 ARCHITECTURE HALF_ADDER_ARCH OF HALF_ADDER IS

 BEGIN

 PROCESS_ADDER: PROCESS (A, B)

 BEGIN

 S <= A XOR B;

 C <= A AND B;

 END PROCESS PROCESS_ADDER;

END HALF_ADDER_ARCH;

C. Structural Style Architecture

The structural style architecture is a modular approach to coding which supports

hierarchical design which is essential to understand complex digital designs. Modular

designs enhance understandability by combining low-level functionality into modules. These

modules can be reused in different designs resulting in save of design time. VHDL structural

model may not be efficient for simple designs. However, the following are the general steps

for writing structural model code.

 Initially the entity and architecture implementations for the individual gates or modules

which are within our system must be defined.

 The entity declaration of our system is done, similar to other models.

 Different components used in our design are declared within the declarative part of

architecture. Component declaration is similar to entity declaration, only keyword entity

must be replaced by keyword component.

 Internal signals, which are the intermediate output signals of one module fed into

another module as input signals, are declared.

 Finally, instances of all modules are created and mapped in the architecture body.

Mapping can be done using direct mapping or implied mapping. In direct mapping, each

of the internal signals and signals of entity of the system are directly associated with the

signals of corresponding components. Whereas in implied mapping, only internal signals

and signals of entity of the system are listed. Though it uses less space, but it requires

the signals be placed in the proper order.

Chapter 10 – VHDL

14

Example: To implement Z = (A AND B) OR (C AND D) using structural model

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

ENTITY TEST IS

 PORT (

 A, B, C, D: IN STD_LOGIC;

 Z: OUT STD_LOGIC

);

END TEST;

 ARCHITECTURE TEST_ARCH OF TEST IS

 COMPONENT AND_GATE

 PORT (

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

ENTITY OR_GATE IS

 PORT (

 X, Y: IN STD_LOGIC;

 W: OUT STD_LOGIC

);

END OR_GATE;

ARCHITECTURE OR_ARCH OF OR_GATE IS

BEGIN

PROCESS(X, Y)

BEGIN

 W <= X OR Y;

 END PROCESS;

END OR_ARCH;

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

ENTITY AND_GATE IS

 PORT (

 X, Y: IN STD_LOGIC;

 W: OUT STD_LOGIC

);

END AND_GATE;

ARCHITECTURE AND_AH OF AND_GATE IS

BEGIN

PROCESS(X, Y)

BEGIN

 W <= X AND Y;

 END PROCESS;

END AND_AH;

Chapter 10 – VHDL

15

X, Y: IN STD_LOGIC;

W: OUT STD_LOGIC

);

 END COMPONENT;

 COMPONENT OR_GATE

 PORT (

X, Y: IN STD_LOGIC;

W: OUT STD_LOGIC

);

 END COMPONENT;

 SIGNAL E, F: STD_LOGIC;

BEGIN

 U1: AND_GATE PORT MAP (X => A, Y => B, W => E);

 U2: AND_GATE PORT MAP (X => C, Y => D, W => F);

 U3: OR_GATE PORT MAP {X => E, Y => F, W => Z};

END HALF_ADDER_ARCH;

10.6 FSM Design

Finite State Machines (FSM) constitute a special modeling technique for sequential logic

circuits. The digital systems, in general, can be expressed as a sequence of actions which

can be realized using FSM.

Figure 10.1: General block diagram of Finite State Machine

Combinational

Logic

Sequential

Logic

inputs outputs

clock

reset

Next

State

Present

State

Chapter 10 – VHDL

16

A FSM is specified by five entities: symbolic states, input signals, output signals, next-

state function and output function. A state specifies a unique internal condition of a

system and the FSM transits from one state to another with time. The next-state

function is used to determine the next state of the system. The output function specifies

the value of the output signals. The general block diagram of FSM is shown in the figure

10.1.

FSM consists of two sections; combinational and sequential logic. The combinational

part has two inputs – external input and present state – and two outputs; next state and

external output. Whereas, the sequential section has three inputs – clock, reset, and

next state – and one output in a form of present state. Since the flip flips are

implemented in sequential logic, clock and reset are part of this section.

If the output of the machine depends not only on the present state but also on the

current input, then it is called a Mealy machine. Otherwise, if it depends only on the

current state, it is called a Moore machine.

A. Design of Sequential Section

PROCESS statement is required for sequential section. The clock and reset signals appear in the

sensitivity list of PROCESS statement. When reset is asserted, present state will be set to initial

state of the system. In other cases, present state will change to next state at the proper clock

edge. A typical design template for the sequential section is given as:

PROCESS (RESET, CLOCK)

BEGIN

 IF(RESET = ‘1’) THEN

 PRESENT_STATE <= INITIAL_STATE;

 ELSIF (CLOCK’EVENT AND CLOCK = ‘1’) THEN

 PRESENT_STATE <= NEXT_STATE;

 END IF;

 END PROCESS;

Chapter 10 – VHDL

17

B. Design of Combinational Section

In this section, the code does not need to be sequential; concurrent code can be used. If

sequential is implemented then the input and present state will be the part of sensitivity list of

PROCESS statement. Within the PROCESS statement, CASE statement is used to implement the

actions and conditions of each state. A basic template for the combinational section is shown as:

PROCESS (INPUT, PRESENT_STATE)

BEGIN

 CASE PRESENT_STATE IS

 WHEN STATE0 => -- WITHIN WHEN STRUCTURE OF CASE,

 … -- MAY CONTAIN ACTIONS AND CONDITIONS

 WHEN STATE1 =>

… -- NUMBER OF WHEN STRUCTURE IS

WHEN STATE2 => -- DEFINED BY NUMER OF STATES IN FSM

 …

 WHEN OTHERS =>

 …

 END CASE;

END PROCESS;

Chapter 10 – VHDL

18

FEW SOLVED EXAMPLES

PROBLEM 1: Simple NAND Gate with two inputs, each input of single bit

LIBRARY IEEE

USE IEEE.STD_LOGIC_1164.ALL;

ENTITY NAND_GATE IS

 PORT (

 IN_A, IN_B: IN STD_LOGIC;

 X_OUT: OUT STD_LOGIC

);

END NAND_GATE;

ARCHITECTURE NAND_ARCH OF NAND_GATE IS

BEGIN

 PROC: PROCESS (IN_A, IN_B)

 BEGIN

 X_OUT <= IN_A NAND IN_B;

 END PROCESS PROC;

END NAND_ARCH;

PROBLEM 2: Write a VHDL code to implement 4 X 1 MUX with each input of 3 bits.

LIBRARY IEEE

USE IEEE.STD_LOGIC_1164.ALL;

ENTITY MUX_4X1 IS

 PORT (

 IN_A, IN_B : IN STD_LOGIC_VECTOR (2 DOWNTO 0);

 IN_C, IN_D : IN STD_LOGIC_VECTOR (2 DOWNTO 0);

 SEL : IN STD_LOGIC _VECTOR(1 DOWNTO 0);

 Z_OUT : OUT STD_LOGIC_VECTOR (2 DOWNTO 0)

);

END MUX_4X1;

ARCHITECTURE MUX_ARCH OF MUX_4X1 IS

Chapter 10 – VHDL

19

BEGIN

 PROC: PROCESS (IN_A, IN_B, IN_C, IN_D, SEL)

 BEGIN

 IF (SEL = “00”) THEN

Z_OUT <= IN_A;

 ELSIF (SEL = “01”) THEN

Z_OUT <= IN_B;

 ELSIF (SEL = “01”) THEN

Z_OUT <= IN_C;

 ELSE

Z_OUT <= IN_D;

 END IF;

 END PROCESS PROC;

END MUX_ARCH;

PROBLEM 3: Write a VHDL code to implement D flip flop.

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

ENTITY DFLIPFLOP IS

PORT (

D, CLK : IN STD_LOGIC;

 Q : OUT STD_LOGIC

);

END DFLIPFLOP;

ARCHITECTURE BEHAVIORAL OF DFLIPFLOP IS

BEGIN

PROCESS (D, CLK)

BEGIN

 IF (CLK'EVENT AND CLK = '1') THEN

 Q <= D;

 END IF;

Chapter 10 – VHDL

20

END PROCESS;

END BEHAVIORAL;

PROBLEM 4: Implement a counter that counts from 0 to 9 using VHDL code

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_ARITH.ALL;

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY COUNTER_CODE IS

 PORT (

CLR : IN STD_LOGIC;

 CLK : IN STD_LOGIC;

 Q : OUT STD_LOGIC_VECTOR (3 DOWNTO 0)

);

END COUNTER_CODE;

ARCHITECTURE BEHAVIORAL OF COUNTER_CODE IS

SIGNAL TMP: STD_LOGIC_VECTOR (3 DOWNTO 0);

BEGIN

 PROCESS (CLK, CLR)

 BEGIN

 IF (CLK'EVENT AND CLK = '0') THEN

 IF (CLR = '1') THEN

 TMP <= "0000";

 ELSE

 TMP <= TMP + 1;

 END IF;

 END IF;

 END PROCESS;

 Q <= TMP;

END BEHAVIORAL;

Chapter 10 – VHDL

21

Problem 5: Write a VHDL code to detect a sequence of “1001”

 The FSM for the detection of the sequence is given by following diagram.

Figure 10.2: FSM for detection of sequence “1001”

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

ENTITY SEQUENCE_STATE IS

 PORT (

 X : IN STD_LOGIC;

 CLK, RESET : IN STD_LOGIC;

 Z : OUT STD_LOGIC

);

END SEQUENCE_STATE;

ARCHITECTURE BEHAVIORAL OF SEQUENCE_STATE IS

TYPE STATE IS (Q0, Q1, Q2, Q3, Q4);

SIGNAL PS, NS: STATE;

BEGIN

SYNC_PROC: PROCESS (CLK, RESET)

BEGIN

Q0
Z = 0

Q1
Z = 0

Q2
Z = 0

Q3
Z = 0

Q4
Z = 1

X = 0

X = 1

X = 1

X = 0

X = 1

X = 0

X = 1

X = 0

X = 0

X = 1

Chapter 10 – VHDL

22

IF (RESET = '1') THEN

 PS <= Q0;

ELSIF (RISING_EDGE(CLK)) THEN

 PS <= NS;

END IF;

END PROCESS SYNC_PROC;

COMB_PROC: PROCESS(PS,X)

BEGIN

CASE PS IS

 WHEN Q0 => Z <= ‘0’;

 IF(X='1') THEN

 NS <= Q1;

 ELSE

 NS <= Q0;

 END IF;

 WHEN Q1 => Z <= ‘0’;

 IF(X='0') THEN

 NS <= Q2;

 ELSE

 NS <= Q1;

 END IF;

 WHEN Q2 => Z <= ‘0’;

 IF(X='0') THEN

 NS <= Q3;

 ELSE

 NS <= Q1;

 END IF;

 WHEN Q3 => Z <= ‘0’;

 IF(X='1') THEN

 NS <= Q4;

 ELSE

 NS <= Q0;

Chapter 10 – VHDL

23

 END IF;

 WHEN Q4 => Z <= ‘1’;

 IF(X='1') THEN

 NS <= Q1;

 ELSE

 NS <= Q0;

 END IF;

 WHEN OTHERS =>

 NS <= Q0;

 END CASE;

END PROCESS COMB_PROC;

END BEHAVIORAL;

PROBLEM 6: Calculate the GCD of two numbers using VHDL

 Functionality code to calculate the GCD of two numbers is given as

int X, Y;

while(1)

{

 while(!GO);

 X = NUM1;

 Y = NUM2;

 while(X != Y)

 {

 if(X<Y)

 Y = Y – X;

 else

 X = X – Y;

 }

 GCD = X;

}

Chapter 10 – VHDL

24

THE FSM FOR THE ABOVE CODE CAN BE REPRESENTED BY FOLLOWIING DIAGRAM

Figure 10.2: FSM for GCD processor

VHDL CODE

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

ENTITY FSM_GCD IS

PORT (

 RESET, CLK: IN STD_LOGIC;

 GO: IN STD_LOGIC;

 NUM1, NUM2: IN INTEGER;

 GCD: OUT INTEGER

);

END FSM_GCD;

ARCHITECTURE BEHAVIORAL OF FSM_GCD IS

TYPE STATE IS (START, INPUT, CHECK, UPDATEX, UPDATE Y, OUTPUT);

SIGNAL PS, NS: STATE;

BEGIN

START

UPDATE X

X = X - Y

CHECK

UPDATE Y

Y = Y - X

OUTPUT

GCD = X

INPUT

X = NUM1

Y = NUM2

RESET = 1

Y > X X > Y

X = Y

Chapter 10 – VHDL

25

SEQ_PROC: PROCESS (CLK, GO, RESET)

BEGIN

IF (GO = '1') THEN

 IF (RESET ='1') THEN

 PS <= START;

 ELSIF (RISING_EDGE(CLK)) THEN

 PS <= NS;

 END IF;

END IF;

END PROCESS SEQ_PROC;

COMB_PROC: PROCESS (NUM1, NUM2, PS)

VARIABLE X, Y: INTEGER;

BEGIN

 CASE PS IS

 WHEN START =>

GCD <= 0;

 NS <= INPUT;

 WHEN INPUT =>

 X := NUM1;

 Y := NUM2;

 NS <= CHECK;

 WHEN CHECK =>

 IF(X>Y) THEN

 NS <= UPDATEX;

 ELSIF(X<Y) THEN

 NS<= UPDATEY;

 ELSE

 NS <= OUTPUT;

 END IF;

 WHEN UPDATEX =>

 X := X – Y

Chapter 10 – VHDL

26

 NS <= CHECK;

WHEN UPDATEY =>

 Y := Y – X;

 NS <= CHECK;

 WHEN OUTPUT =>

GCD <= X;

 NS <= INPUT;

 WHEN OTHERS =>

GCD <= 0;

 NS <= INPUT;

 END CASE;

 END PROCESS COMB_PROC;

END BEHAVIORAL;

